Automated processing method for bus crossing enforcement

    公开(公告)号:US09741249B2

    公开(公告)日:2017-08-22

    申请号:US13210447

    申请日:2011-08-16

    CPC classification number: G08G1/0175 G06K9/325 G06K2209/15

    Abstract: As set forth herein, systems and methods are described that facilitate to analyze a video stream from a camera mounted on the side of a school bus, wherein a sub-set of video sequences showing cars illegally passing the stopped school bus are automatically identified through image and/or video processing. The described systems and methods provide a significant savings in terms of the amount of manual review that is required to identify such violations. The video sequences also can be analyzed further to additionally produce images of the license plate (for identification of the violator), thereby providing further reduction in required human processing and review time. In one embodiment, automatic license plate recognition (ALPR) is employed to identify text on the violator's license plate, as well as the state by which the license plate was issued, without requiring human review of the license plate image.

    Method and system for automatically detecting multi-object anomalies utilizing joint sparse reconstruction model
    4.
    发明授权
    Method and system for automatically detecting multi-object anomalies utilizing joint sparse reconstruction model 有权
    利用关联稀疏重建模型自动检测多物体异常的方法和系统

    公开(公告)号:US09122932B2

    公开(公告)日:2015-09-01

    申请号:US13476239

    申请日:2012-05-21

    CPC classification number: G06K9/00771 G06K9/6249 G08G1/0129 H04N7/181

    Abstract: Methods and systems for automatically detecting multi-object anomalies at a traffic intersection utilizing a joint sparse reconstruction model. A first input video sequence at a first traffic location can be received and at least one normal event involving P moving objects (where P is greater than or equal to 1) can be identified in an offline training phase. The normal event in the first input video sequence can be assigned to at least one normal event class and a training dictionary suitable for joint sparse reconstruction can be built in the offline training phase. A second input video sequence captured at a second traffic location similar to the first traffic location can be received and at least one event involving P moving objects can be identified in an online detection phase.

    Abstract translation: 利用联合稀疏重建模型自动检测交通路口多物体异常的方法和系统。 可以在离线训练阶段中识别在第一交通位置处的第一输入视频序列,并且可以在离线训练阶段识别涉及P个运动对象(其中P大于或等于1)的至少一个正常事件。 可以将第一输入视频序列中的正常事件分配给至少一个正常事件类,并且可以在离线训练阶段中构建适合关联稀疏重建的训练字典。 可以接收在类似于第一业务位置的第二业务位置处捕获的第二输入视频序列,并且可以在在线检测阶段中识别涉及P个移动对象的至少一个事件。

    Language-based color calibration of displays
    5.
    发明授权
    Language-based color calibration of displays 有权
    基于语言的显示器颜色校准

    公开(公告)号:US09111477B2

    公开(公告)日:2015-08-18

    申请号:US13193955

    申请日:2011-07-29

    Abstract: Described herein is a method of calibrating displays (or printers) using Natural Language-based commands. The exemplary method provides an easy-to-use solution to the common methods of color calibrating a display. Instead of using sliders or manual controls for the individual dimensions of a three-dimensional color problem, the user is able to make adjustments via natural language commands, such as “make reference patch less purple.” The method does not require the user to understand color mixing technology when making separate R, G, and B adjustments to match a specified patch. A user can easily express the necessary color adjustment in natural language terms, making the process simpler and faster.

    Abstract translation: 这里描述的是使用基于自然语言的命令校准显示器(或打印机)的方法。 该示例性方法为对显示器进行颜色校准的常见方法提供了易于使用的解决方案。 用户可以通过自然语言命令进行调整,而不是使用滑块或手动控制三维颜色问题的各个维度,例如“使参考补丁少紫色”。该方法不需要用户理解 进行单独的R,G和B调整以匹配指定的补丁时的混色技术。 用户可以轻松地以自然语言表达必要的颜色调整,使过程更简单快捷。

    Systems and methods for image or video personalization with selectable effects
    6.
    发明授权
    Systems and methods for image or video personalization with selectable effects 有权
    用于具有可选择效果的图像或视频个性化的系统和方法

    公开(公告)号:US09058757B2

    公开(公告)日:2015-06-16

    申请号:US13584159

    申请日:2012-08-13

    Abstract: Embodiments relate to systems and methods for image or video personalization with selectable effects. Image data, which can include video sequences or digital still images, can be received in a graphical personalization tool to perform various image processing and related operations to insert personalized objects into the image data. In aspects, the personalized object(s) can be or include graphical inputs such as, for instance, textual information, graphical information, and/or other visual objects. The graphical personalization tool can automatically perform one or more processing stages in the image path, such as identifying key regions in a still image and/or key frames in a video sequence, in which personalized objects will be generated and inserted. Personalized objects can be extended to additional regions of a still image, can be animated across multiple still images, and/or can be extended to additional frames of a video sequence, all on an automated or user-assisted basis.

    Abstract translation: 实施例涉及用于具有可选择效果的图像或视频个性化的系统和方法。 可以在图形个性化工具中接收可以包括视频序列或数字静止图像的图像数据,以执行各种图像处理和相关操作,以将个性化对象插入到图像数据中。 在方面中,个性化对象可以是或包括图形输入,例如文本信息,图形信息和/或其他视觉对象。 图形个性化工具可以自动执行图像路径中的一个或多个处理阶段,例如识别静止图像中的关键区域和/或视频序列中的关键帧,其中将生成和插入个性化对象。 个性化对象可以扩展到静止图像的附加区域,可以在多个静止图像之间动画,和/或可以在自动或用户辅助的基础上扩展到视频序列的附加帧。

    Substrate fluorescence mask utilizing a multiple color overlay for embedding information in printed documents
    7.
    发明授权
    Substrate fluorescence mask utilizing a multiple color overlay for embedding information in printed documents 有权
    基板荧光掩模利用多重重叠以便在印刷文件中嵌入信息

    公开(公告)号:US08980504B2

    公开(公告)日:2015-03-17

    申请号:US11708313

    申请日:2007-02-20

    CPC classification number: B41M3/144 B41M3/14

    Abstract: A method is provided for creation of a substrate fluorescence mask having background color(s), UV mark color(s), and distraction color(s), to be printed as an image on a substrate containing optical brightening agents. The method includes selecting one or more UV mark colors for the mask such that the UV mark colors exhibit low contrast against the background color(s) under normal illumination and high contrast against the background color(s) under UV illumination. One or more distraction colors are also selected, such that the distraction color(s) exhibit low contrast against the background color(s) under UV illumination and exhibit high contrast against the background color(s) under normal illumination. A distraction pattern, formed from one or more distraction colors, is also selected.

    Abstract translation: 提供了一种用于产生具有背景颜色,UV标记颜色和分散颜色的衬底荧光掩模的方法,作为图像印刷在含有荧光增白剂的衬底上。 该方法包括为掩模选择一个或多个UV标记颜色,使得UV标记颜色在正常照明下对背景颜色显示低对比度,并且在UV照射下对背景颜色显示高对比度。 还选择一种或多种分散颜色,使得分散颜色在UV照射下表现出与背景颜色的低对比度,并且在正常照明下显示与背景颜色的高对比度。 还选择由一种或多种分散颜色形成的分散图案。

    Finding text in natural scenes
    8.
    发明授权
    Finding text in natural scenes 有权
    在自然场景中寻找文字

    公开(公告)号:US08837830B2

    公开(公告)日:2014-09-16

    申请号:US13494173

    申请日:2012-06-12

    Abstract: As set forth herein, systems and methods facilitate providing an efficient edge-detection and closed-contour based approach for finding text in natural scenes such as photographic images, digital, and/or electronic images, and the like. Edge information (e.g., edges of structures or objects in the images) is obtained via an edge detection technique. Edges from text characters form closed contours even in the presence of reasonable levels of noise. Closed contour linking and candidate text line formation are two additional features of the described approach. A candidate text line classifier is applied to further screen out false-positive text identifications. Candidate text regions for placement of text in the natural scene of the electronic image are highlighted and presented to a user.

    Abstract translation: 如本文所述,系统和方法有助于提供有效的边缘检测和基于闭合轮廓的方法,用于在诸如照相图像,数字和/或电子图像等的自然场景中查找文本。 通过边缘检测技术获得边缘信息(例如,图像中的结构或对象的边缘)。 即使存在合理的噪声水平,文本字符的边缘也会形成封闭的轮廓。 闭合轮廓链接和候选文本线形成是所述方法的两个附加特征。 应用候选文本行分类器进一步筛选出假阳性文本标识。 用于在电子图像的自然场景中放置文本的候选文本区域被突出显示并呈现给用户。

    METHOD AND SYSTEM FOR AUTOMATICALLY DETECTING ANOMALIES AT A TRAFFIC INTERSECTION
    9.
    发明申请
    METHOD AND SYSTEM FOR AUTOMATICALLY DETECTING ANOMALIES AT A TRAFFIC INTERSECTION 审中-公开
    用于在交通干扰下自动检测异常的方法和系统

    公开(公告)号:US20130286198A1

    公开(公告)日:2013-10-31

    申请号:US13455687

    申请日:2012-04-25

    CPC classification number: G06K9/00785 G08G1/04

    Abstract: A method, system and processor-readable medium for automatically detecting anomalies at a traffic intersection. A set of clusters of nominal vehicle paths and a set of clusters of nominal trajectories within the nominal vehicle paths can be derived in an offline process. A set of features within each nominal trajectory among the set of clusters of nominal trajectories can be selected. A probability distribution for features indicative of nominal vehicle behavior within the nominal trajectories can be derived. An input video sequence can be received and presence of the anomaly in the vehicle path, trajectories and features within the input video sequence can be detected utilizing the derived path clusters, trajectory clusters, and feature distributions.

    Abstract translation: 一种用于自动检测交通路口异常的方法,系统和处理器可读介质。 在离线过程中可以导出一组标称车辆路径的群集和名义车辆路径中的一组标称轨迹。 可以选择在标称轨迹集合中的每个标称轨迹内的一组特征。 可以推导出在标称轨迹内指示车辆行为名义的特征的概率分布。 可以接收输入视频序列,并且可以使用导出的路径簇,轨迹簇和特征分布来检测输入视频序列内的车辆路径,轨迹和特征中的异常的存在。

    ROBUST CROPPING OF LICENSE PLATE IMAGES
    10.
    发明申请
    ROBUST CROPPING OF LICENSE PLATE IMAGES 有权
    许可证板图像的稳健修剪

    公开(公告)号:US20130272579A1

    公开(公告)日:2013-10-17

    申请号:US13448976

    申请日:2012-04-17

    CPC classification number: G06K9/3258 G06K2209/15

    Abstract: A method, system, and computer-usable tangible storage device for robustly cropping and accurately recognizing license plates to account for noise sources and interfering artifacts are disclosed. License plate images and sub-images can be tightly cropped utilizing an image-based classifier and gradient-based cropping. An image-based classifier can identify the location of valid characters within the image. Because of a number of noise sources, such as, for example, residual plate rotation and shear in the characters within the image, the image-based classifier performs a “rough” identification of the image boundaries. An additional processing step utilizing gradient-based cropping is performed to fine-tune the license plate image boundaries. Gradient-based cropping eliminates unwanted border artifacts that could substantially impact the segmentation and license plate character recognition results.

    Abstract translation: 公开了一种方法,系统和计算机可用的有形存储设备,用于强力裁剪和准确识别牌照以考虑噪声源和干扰伪像。 可以使用基于图像的分类器和基于梯度的裁剪来严格裁剪牌照图像和子图像。 基于图像的分类器可以识别图像中有效字符的位置。 由于许多噪声源,例如图像中的字符中的残余板旋转和剪切,基于图像的分类器对图像边界执行“粗略”识别。 执行利用基于梯度的裁剪的附加处理步骤来微调车牌图像边界。 基于梯度的裁剪消除了不必要的边界伪影,可能会对分割和车牌字符识别结果产生重大影响。

Patent Agency Ranking