Abstract:
A yaw-rate sensor having a substrate and a plurality of movable substructures that are mounted over a surface of the substrate, the movable substructures being coupled to a shared, in particular, central spring element, where the movable substructures are excitable into a coupled oscillation in a plane that extends parallel to the surface of the substrate, the movable substructures having Coriolis elements, where deflections of the Coriolis elements induced by a Coriolis force are detectable, a first Coriolis element being provided for detecting a yaw rate about a first axis, a second Coriolis element being provided for detecting a yaw rate about a second axis, the second axis being oriented perpendicularly to the first axis.
Abstract:
A piezoresistive micromechanical sensor component includes a substrate, a seismic mass, at least one piezoresistive bar, and a measuring device. The seismic mass is suspended from the substrate such that it can be deflected. The at least one piezoresistive bar is provided between the substrate and the seismic mass and is subject to a change in resistance when the seismic mass is deflected. The at least one piezoresistive bar has a lateral and/or upper and/or lower conductor track which at least partially covers the piezoresistive bar and extends into the region of the substrate. The measuring device is electrically connected to the substrate and to the conductor track and is configured to measure the change in resistance over a circuit path which runs from the substrate through the piezoresistive bar and from the piezoresistive bar through the lateral and/or upper and/or lower conductor track.
Abstract:
A delta sigma modulator includes an oscillatory system having a natural frequency and an electronics and a control loop which acts upon the electronics from the oscillatory system and again upon the oscillatory system from the electronics. The control loop provides that a gain in the control loop demonstrates a peaking in a frequency range around the natural frequency of the oscillatory system.
Abstract:
A micromechanical motion sensor is capable of detecting a deflection imparted to an oscillatably mounted bar spring element excited to a permanent periodic oscillation by an electrostatic oscillating drive to which a periodic drive voltage is applied. To compensate non-linearities of the resonance frequency response of the bar spring element, a sum of a normal drive voltage signal and a compensation drive signal may be applied to a comb drive. In an alternative embodiment, separate compensation comb drive units may be additionally provided to the comb drive units used for the oscillation drive and a compensation voltage signal may be applied to them to compensate for the non-linearity.
Abstract:
An exemplary embodiment of the present invention creates a micromechanical rotational rate sensor having a first Coriolis mass element and a second Coriolis mass element which may be situated over a surface of a substrate. An exemplary embodiment of a micromechanical rotational rate sensor may have an activating device by which the first Coriolis mass element and the second Coriolis mass element are able to have vibrations activated along a first axis. An exemplary embodiment of a micromechanical rotational rate sensor may have a detection device by which deflections of the first Coriolis mass elements and of the second Coriolis element are able to be detected along a second axis, which is perpendicular to the first axis, on the basis of a correspondingly acting Coriolis force. The first axis and second axis may run parallel to the surface of the substrate. The detecting device may have a first detection mass device and a second detection mass device. The centers of gravity of the first Coriolis mass element, the second Coriolis mass element, the first detection mass device and the second detection mass device may coincide at a common mass center of gravity when they are at rest.
Abstract:
A yaw-rate sensor is proposed having a first and a second Coriolis element (100, 200) which are arranged side-by-side above a surface (1) of a substrate. The Coriolis elements (100, 200) are induced to oscillate parallel to a first axis. Due to a Coriolis force, the Coriolis elements (100, 200) are deflected in a second axis which is perpendicular to the first axis. The first and second Coriolis elements (100, 200) are coupled by a spring (52) which is designed to be yielding in the first and in the second axis. Thus, the frequencies of the oscillations in the two axes are developed differently for the in-phase and antiphase oscillation.
Abstract:
A yaw-rate sensor having a substrate and a plurality of movable substructures that are mounted over a surface of the substrate, the movable substructures being coupled to a shared, in particular, central spring element, means being provided for exciting the movable substructures into a coupled oscillation in a plane that extends parallel to the surface of the substrate, the movable substructures having Coriolis elements, means being provided for detecting deflections of the Coriolis elements induced by a Coriolis force, a first Coriolis element being provided for detecting a yaw rate about a first axis, a second Coriolis element being provided for detecting a yaw rate about a second axis, the second axis being oriented perpendicularly to the first axis.
Abstract:
A rotation-rate sensor having at least one quadrature compensation pattern, which includes at least one first electrode and one second electrode. The second electrode has a first electrode surface and a second electrode surface which are situated opposite to each other. The first electrode is situated in an intermediate space, between the first electrode surface and the second electrode surface. The first electrode surface and also the second electrode surface, over their extension, are at a different distance from the first electrode. The first electrode surface and the second electrode surface of the second electrode are at generally the same distance from each other, over their extension.
Abstract:
A method and system are provided including a rotation-rate sensor having a substrate, a bearing, a vibrating structure suspended on the bearing by springs in a rotatable manner for performing a planar driving vibration motion, and drive means for producing the planar driving vibration motion of the vibrating structure. The rotation-rate sensor has first evaluation means for detecting a rotation in a first axis of rotation and second evaluation means for detecting a rotation in a second axis of rotation.
Abstract:
A rotational rate sensor having a substrate and a Coriolis element is proposed, the Coriolis element being situated over a surface of a substrate; a driving arrangement being provided, by which the Coriolis element is induced to vibrations parallel to a first axis; a detection arrangement being provided, by which an excursion of the Coriolis elements is detectable on the basis of a Coriolis force in a second axis that is provided to be essentially perpendicular to the first axis; the first and second axis being parallel to the surface of the substrate; sensor elements that are designated to be at least partially movable with respect to the substrate being provided; a force-conveying arrangement being provided; the force-conveying arrangement being provided to convey a static force effect between the substrate and at least one of the sensor elements.