Abstract:
A power conversion system includes a first converter coupled to a power source, wherein the first converter includes an input side, and an output side electrically isolated from the input side. The power conversion system also includes a second converter coupled to the power source, wherein the second converter includes an input side, and an output side electrically isolated from the input side. The second converter input side is coupled in parallel with the first converter input side, and the second converter output side is coupled in series with the first converter output side. The power conversion system also includes an inverter coupled to the first converter output side and to the second converter output side, and the inverter supplies alternating current to an electrical distribution network.
Abstract:
A power conversion system includes a first converter coupled to a power source, wherein the first converter includes an input side, and an output side electrically isolated from the input side. The power conversion system also includes a second converter coupled to the power source, wherein the second converter includes an input side, and an output side electrically isolated from the input side. The second converter input side is coupled in parallel with the first converter input side, and the second converter output side is coupled in series with the first converter output side. The power conversion system also includes an inverter coupled to the first converter output side and to the second converter output side, and the inverter supplies alternating current to an electrical distribution network.
Abstract:
A circuit breaker apparatus is provided and includes a trip mechanism which is coupled to an electrical circuit and which is configured to interrupt an operation of the electrical circuit when the trip mechanism is actuated, an electronic trip unit in signal communication with and configured to actuate the trip mechanism when pre-selected conditions are satisfied, and a rating plug coupled to the electronic trip unit and configured to operate in a first mode in response to a receipt of a transmitted control signal at the rating plug, and to otherwise operate in a second mode, the first and second modes being respectively associated with first and second ones of the pre-selected conditions to be correspondingly transmitted to the electronic trip unit by which the electronic trip unit determines whether to actuate the trip mechanism.
Abstract:
A motor starter system includes a plurality of switches, and a controller operatively connected to each of the plurality switches. The controller is configured and disposed to selectively activate select ones of the plurality of switches upon detecting a particular phase angle of each of a plurality of phases of a multi-phase electrical source.
Abstract:
A switching system includes a plurality of diodes forming a diode bridge, and a micro-mechanical system (MEMS) switch array closely coupled to the plurality of diodes. The MEMS switch array is electrically connected in an (M×N) array. The (M×N) array includes a first MEMS switch leg electrically connected in parallel with a second MEMS switch leg. The first MEMS switch leg includes a first plurality of MEMS dies electrically connected in series, and the second MEMS switch leg includes a second plurality of MEMS dies electrically connected in series.
Abstract:
A switching system includes a plurality of diodes forming a diode bridge, and a micro-mechanical system (MEMS) switch array closely coupled to the plurality of diodes. The MEMS switch array is electrically connected in an (M×N) array. The (M×N) array includes a first MEMS switch leg electrically connected in parallel with a second MEMS switch leg. The first MEMS switch leg includes a first plurality of MEMS dies electrically connected in series, and the second MEMS switch leg includes a second plurality of MEMS dies electrically connected in series.
Abstract:
An over current protection system includes a current sensing member configured and disposed to output an electrical rate of change signal that is indicative of a rate of change of an electrical current being in excess of a predetermined value, at least one micro electro-mechanical switch (MEMS) device operatively connected to the current sensing member, and a controller electrically coupled to each of the current sensing member and the at least one MEMS device. The controller is configured and disposed to open the at least one MEMS device in response the electrical rate of change signal.
Abstract:
A circuit breaker apparatus is provided and includes a trip mechanism which is coupled to an electrical circuit and which is configured to interrupt an operation of the electrical circuit when the trip mechanism is actuated, an electronic trip unit in signal communication with and configured to actuate the trip mechanism when pre-selected conditions are satisfied, and a rating plug coupled to the electronic trip unit and configured to operate in a first mode in response to a receipt of a transmitted control signal at the rating plug, and to otherwise operate in a second mode, the first and second modes being respectively associated with first and second ones of the pre-selected conditions to be correspondingly transmitted to the electronic trip unit by which the electronic trip unit determines whether to actuate the trip mechanism.
Abstract:
An inverter apparatus for a photovoltaic panel includes a primary microcontroller configured to send a conversion signal to a DC to AC conversion unit. The inverter further includes a first isolator and a secondary microcontroller communicatively coupled to the primary microcontroller through the first isolator. The secondary microcontroller is configured to provide more than one communication mode to the primary microcontroller for communicating with a remote system.
Abstract:
A device for controlling an electrical current includes control circuitry, a micro electromechanical system (MEMS) switch in communication with the control circuitry, the MEMS switch responsive to the control circuitry to facilitate the interruption of an electrical current, a Hybrid Arcless Limiting Technology (HALT) arc suppression circuit disposed in electrical communication with the MEMS switch to receive a transfer of electrical energy from the MEMS switch in response to the MEMS switch changing state from closed to open, the HALT arc suppression circuit including a capacitive portion, and a variable resistance arranged in parallel electrical communication with the capacitive portion of the HALT arc suppression circuit, the variable resistance to dissipate a portion of the transferred electrical energy.