Abstract:
Stacking techniques are illustrated in example embodiments of the present invention wherein semiconductor dies are mounted in a module to become a MCM which serves as the basic building block. A combination of these modules and dies in a substrate creates a package with specific function or a range of memory capacity. Several example system configurations are provided using BGA and PGA to illustrate the stacking technique. Several pin assignment and signal routing techniques are illustrated wherein internal and external signals are routed from main board to various stacked modules. Expansion can be done both on the vertical and horizontal orientations.
Abstract:
Stacking techniques are illustrated in example embodiments of the present invention wherein semiconductor dies are mounted in a module to become a MCM which serves as the basic building block. Combination of these modules and dies in a substrate creates a package with specific function or a range of memory capacity. Several example system configurations are provided using BGA and PGA to illustrate the stacking technique. Several pin assignment and signal routing techniques are illustrated wherein internal and external signals are routed from main board to various stacked modules. Expansion can be done both on the vertical and horizontal orientations.
Abstract:
In conventional storage device system, data transfer from memory to IO bus has to go through an intermediate volatile memory (cache). Data transfer therefore is completed in two steps—data is transferred from memory to cache and then from cache to the IO bus. Memory-to-cache transfer is handled by one DMA engine and another DMA engine for cache-to-IO transfer. To start the transfer, processor prepares the DMA transfer from memory to cache. Upon completion of the memory-to-cache transfer, the processor is interrupted to prepare the transfer from cache to IO. In between transfers, the processor has to intervene to setup the next transfer utilizing the precious processor cycles. The present invention improves on the above process using two novel schemes; 1) The use of dependency table to facilitate the transfer from memory-to-IO with less intervention from the processor and 2) the use of Bus Snooping scheme to bypass the transfer to cache making the transfer directly from memory to IO bus. This makes the transfer from memory to IO completed in single transfer.
Abstract:
Stacking techniques are illustrated in example embodiments of the present invention wherein semiconductor dies are mounted in a module to become a MCM which serves as the basic building block. A combination of these modules and dies in a substrate creates a package with specific function or a range of memory capacity. Several example system configurations are provided using BGA and PGA to illustrate the stacking technique. Several pin assignment and signal routing techniques are illustrated wherein internal and external signals are routed from main board to various stacked modules. Expansion can be done both on the vertical and horizontal orientations.