Abstract:
In accordance with at least one exemplary embodiment, a syringe, method and system for delivering a therapeutic amount of ozone are disclosed. An exemplary syringe can have a gas chamber and one or more electrodes. A portion of at least one electrode can be within the gas chamber. Alternatively, singularly or in conjunction, one or both electrodes can be attached to the outside of an exemplary syringe. One or more electrical contact points can be outside the gas chamber. Each electrical contact point can be connected to an electrode. Oxygen gas can provided within the gas chamber of the exemplary syringe. A medical ozone generator can be connected to the syringe via the electrical contact points. Corona discharge can be effectuated via the electrodes, which can result in an amount of ozone gas can being produced from the oxygen gas.
Abstract:
A thermal management system is provided which comprises (a) a synthetic jet actuator; and (b) a frame having at least one element therein which pressingly engages said synthetic jet actuator.
Abstract:
A thermal management system (101), comprising (a) a synthetic jet actuator (103), and (b) a processor (107) in communication with the synthetic jet actuator, the processor being adapted to receive programming instructions, and being further adapted to modify the operation of the synthetic jet actuator in response to the programming instructions.
Abstract:
A device (103) is provided which comprises (a) a housing (115) equipped with a viewing window (253); (b) a diaphragm (301), visible through said viewing window; (c) an actuator (126) adapted to vibrate said diaphragm at an operating frequency; and (d) a strobe light (121).
Abstract:
A device (103) is provided which comprises (a) a housing (115) equipped with a viewing window (253); (b) a diaphragm (301), visible through said viewing window; (c) an actuator (126) adapted to vibrate said diaphragm at an operating frequency; and (d) a strobe light (121).
Abstract:
In accordance with at least one exemplary embodiment, a syringe, method and system for delivering a therapeutic amount of ozone are disclosed. An exemplary syringe can have a gas chamber and one or more electrodes. A portion of at least one electrode can be within the gas chamber. Alternatively, singularly or in conjunction, one or both electrodes can be attached to the outside of an exemplary syringe. One or more electrical contact points can be outside the gas chamber. Each electrical contact point can be connected to an electrode. Oxygen gas can provided within the gas chamber of the exemplary syringe. A medical ozone generator can be connected to the syringe via the electrical contact points. Corona discharge can be effectuated via the electrodes, which can result in an amount of ozone gas can being produced from the oxygen gas.
Abstract:
A method is provided for forming tinsel on a synthetic jet actuator. The method comprises (a) providing a synthetic jet actuator assembly (201) comprising a bobbin (203), a voice coil (213), driver electronics (215), and a surround (205); and (b) printing polymer thick film (PTF) conductive ink (209) across the surround, thus connecting the voice coil to the driver electronics.