Abstract:
An apparatus for processing components of a fluid having a first fluid component and a second fluid component in a fluid property-dependent fluid device includes an energy device configured to input energy to the fluid, the energy selectively changing a property of one of the first and second components more than the other of the first and second components.
Abstract:
A method for performing a formation fluid test in a borehole penetrating a subsurface formation includes disposing a fluid tester in the borehole, extracting a sample of fluid from the subsurface formation using the fluid tester, and analyzing the sample using the fluid tester to provide test data for a process used to analyze the sample. The method also includes fitting an equation to the test data and calculating a ratio of a first derivative of the equation to a second derivative of the equation. The method further includes continuing to extract the sample from the subsurface formation in response to the ratio indicating a clean sample will be forthcoming and terminating the extracting of the sample from the subsurface formation in response to the ratio indicating a clean sample will not be forthcoming.
Abstract:
A method for forming a wellbore in an earth formation includes positioning a drill string in a wellbore; the drill string including a bottom hole assembly (BHA) that includes a steering unit, one or more sensors responsive to one or more formation properties, and one or more sensors responsive to the current orientation of the BHA in a wellbore. The method also includes receiving information from the BHA related to the formation properties and information related to a current orientation of the BHA in the wellbore and processing the information using computing device that is either a programmable optical computing device or a quantum computing device. The computing device calculates the position of formation features with respect to current wellbore position in real time and compare the current position to a prescribed path.
Abstract:
An apparatus for estimating an ambient environment at which inorganic scale will form in a downhole fluid includes a stress chamber disposed in a borehole in a production zone at a location within a specified range of maximum pressure and configured to receive a sample of the fluid from the production zone and to apply an ambient condition to the sample that causes the formation of inorganic scale. An inorganic scale sensor is configured to sense formation of inorganic scale within the chamber and an ambient environment sensor is configured to sense an ambient environment within the chamber at which the formation of inorganic scale occurs. The apparatus further includes a processor configured to receive measurement data from the inorganic scale sensor and the ambient environment sensor and to identify the ambient environment at which the formation of inorganic scale occurs.
Abstract:
An apparatus for estimating an ambient environment at which organic scale will form in a downhole fluid includes a stress chamber disposed in a borehole in a production zone at a location of maximum pressure and configured to receive a sample of the fluid from the production zone and to apply an ambient condition to the sample that causes the formation of organic scale. A sensor is configured to sense formation of organic scale within the chamber and an ambient environment sensor is configured to sense an ambient environment within the chamber at which the formation of organic scale occurs. The apparatus further includes a processor configured to receive measurement data from the organic scaling sensor and the ambient environment sensor and to identify the ambient environment at which the formation of organic scale occurs using the organic scaling sensor measurement data and ambient environment sensor measurement data.
Abstract:
An apparatus for estimating a property of a downhole fluid includes a carrier configured to be conveyed through a borehole penetrating the earth, a fluid extraction device disposed at the carrier and configured to extract a sample of the downhole fluid, and a probe cell having a window to receive the sample. The apparatus further includes a light source to illuminate the sample through the window with light photons, and a photodetector to receive light photons through the window that have interacted with the downhole fluid and generate a signal indicative of an amount of the received light photons. The generated signal is indicative of the property. The photodetector has an optical cavity having a semiconductor that has a difference between a valence energy band and a conduction energy band for electrons that is greater than the energy of each of the received light photons.
Abstract:
An apparatus for performing a downhole operation includes a carrier configured to be disposed in a borehole in an earth formation, and a deformable component configured to be disposed in the borehole. The deformable component includes an elastomeric material and a barrier coating disposed on a surface of the elastomeric material. The barrier coating has properties configured to resist permeation of downhole gases into the elastomeric material at downhole temperatures.
Abstract:
Disclosed is method for simulating materials subsurface to the earth. The method includes: receiving dimensions of each subsurface material to be simulated; receiving a value of a property for each of subsurface materials to be simulated; and constructing a three-dimensional physical model of the subsurface materials using a three-dimensional printer, the three-dimensional printer being configured to print one or more layers of a print material for each of the subsurface materials being represented in the model wherein dimensions and a property value of the print material for each subsurface material being represented corresponds to the dimensions and the property value for that subsurface material.
Abstract:
A seal includes an elastomeric material and a plurality of nanosprings filling the elastomeric material to form a filled elastomeric composite that provides the seal. A spring constant of the nanosprings is within a selected range of an effective spring constant of the elastomeric material such that a durometer of the filled elastomeric composite at an elevated temperature is greater than the durometer of the elastomeric material alone at the elevated temperature. The seal may be used to seal a first component to a second component where both components are configured to perform a task below the surface of the earth.
Abstract:
An apparatus for estimating gravitational acceleration includes: a chamber having a longitudinal axis and configured to contain a first gas; a first cavity ring-down spectrometer configured to measure a density of the first gas at a first location along the longitudinal axis using a first optical cavity having a first optical axis and configured to resonate light rays that are absorbed by the first gas in the first optical cavity, wherein the first optical axis has at least a vector component perpendicular to the longitudinal axis; and a processor configured to receive a first density measurement from the first cavity ring-down spectrometer and to estimate the gravitational acceleration using the first density measurement.