Abstract:
A turbine blade for a gas turbine engine has an aerofoil portion extending from a root to a tip. The tip carries winglets. A gutter extends across the tip to entrain gas leaking around the tip (over tip leakage). The aerofoil portion has a mean camber line and the gutter has a center line. In the examples described, the conditions that (a) the mean camber line and the centre line coincide at the exit when viewed from the tip towards the root, and (b) the mean camber line and the center line are parallel at the exit when viewed as aforesaid, are not both fulfilled.
Abstract:
Cooling arrangements have been provided for blades and in particular turbine blades utilising gas turbine engines. Generally for internal strength a leading passage has been separate by a solid wall from a feed passage as impingement apertures may diminish structural strength as centres for stress concentration. However, impingement apertures allow impingement jets which have improved cooling efficiency. By providing a leading passage which is divided at least into a lower section and an upper section the lower section can have a wall which is solid for structural integrity whilst an upper section has impingement apertures for greater cooling efficiency.
Abstract:
Cooling within aerofoils (30, 47, 67, 87) is a requirement in order that the materials from which the aerofoil (30, 47, 67, 87) is created can remain within acceptable operational parameters. Traditionally static pressure as well as enhanced dynamic pressure impingement flows have been utilised but there are problems with regard to achieving a necessary over pressure to avoid hot gas ingestion or reduced cooling effect. It will be appreciated that fluid flows and in particular coolant fluid flows must be used most appropriately in order to maintain operational efficiency. By providing a plurality of feed apertures (41, 61, 81) which are shaped to have an entry portion (51, 71, 91) which is generally elliptical and an exit portion (52, 72, 92) it is possible to grab and turn a proportion of a feed flow (44, 64, 84) for substantially perpendicular or other angular presentation to an opposed surface of a cooling chamber (42, 62, 82) within which cooling is required.
Abstract:
Cooling within aerofoils (30, 47, 67, 87) is a requirement in order that the materials from which the aerofoil (30, 47, 67, 87) is created can remain within acceptable operational parameters. Traditionally static pressure as well as enhanced dynamic pressure impingement flows have been utilized but there are problems with regard to achieving a necessary over pressure to avoid hot gas ingestion or reduced cooling effect. It will be appreciated that fluid flows and in particular coolant fluid flows must be used most appropriately in order to maintain operational efficiency. By providing a plurality of feed apertures (41, 61, 81) which are shaped to have an entry portion (51, 71, 91) which is generally elliptical and an exit portion (52, 72, 92) it is possible to grab and turn a proportion of a feed flow (44, 64, 84) for substantially perpendicular or other angular presentation to an opposed surface of a cooling chamber (42, 62, 82) within which cooling is required.
Abstract:
Cooling arrangements for blades, and in particular turbine blades utilizing gas turbine engines include impingement apertures with impingement jets, which improve cooling efficiency. By providing a leading passage, which is divided at least into a lower section and an upper section, the lower section can have a wall, which is solid for structural integrity while an upper section has impingement apertures for greater cooling efficiency.
Abstract:
With regard to cooling turbine blades in a gas turbine engine a compromise has to be made between convective cooling within the inner cavity defining a flow path for coolant and the blow rates for developing film cooling on an outer surface of the aerofoil. By providing a chamber between the flow cavity and external apertures reconciliation between the necessary flow rates for convective cooling within the cavity defining the pathway for coolant flow within the aerofoil and the necessary coolant blowing rate for film development can be achieved.
Abstract:
A rotary blade, such as a turbine blade for a gas turbine engine, has an aerofoil portion with a tip partly shrouded by winglets. A gutter extends across the radially outer face of the tip to leave upstands. Cooling air feed galleries are drilled into each upstand, from the trailing edge, toward the upper end of a cooling air feed void, which is spaced from the trailing edge. Cooling passages are drilled from the winglet edges to the gallery. Cooling air supplied through the void passes along the gallery, through the passages and leaves the blade at the cooling holes. This allows cooling to be provided near the trailing edge of the tip without requiring the geometry around the trailing edge to be thickened to accommodate a cooling air void.
Abstract:
In order to couple coolant air flow presented through a coolant gallery 4, 24 through an opening 7, 27 into a passage 8, 28 a flow deflector 6, 26 is provided. The flow deflector 6, 26 progressively deflects the coolant air flow 5, 25 through the opening 7, 27 such that there is reduced loss in coolant flow 5, 25 pressure.
Abstract:
Turbine blades used in jet engines generally require cooling in order to achieve desired engine performance. Cooling of blade tip areas is difficult due to the limited space available such that thickening tip areas in order to allow passages and holes to be incorporated adds to weight and therefore stressing along with causing additional manufacturing costs. The present cooling arrangement includes coolant release passages 5 which present coolant flow to coolant entrainment elements or fins 2 such that the coolant flow is entrained close to the blade tip surface 12. Thus, turbulent air flow caused by adjacent shrouds and edges are inhibited from diluting the coolant flow and therefore reducing thermal efficiency.
Abstract:
A rotor blade 40 for a gas turbine engine has an aerofoil portion 42 from a root 48 to a tip 54. In use, combustion gas may leak over the tip 54 from the pressure face 52 to the suction face 50. A gutter 62 extends across the tip 54 to entrain any over tip leakage gap. The floor of the gutter defines an increased depth portion 72 at the exit end of the gutter 62.