Abstract:
The present invention relates to a method of treating a crude acetone stream. The method generally includes treating a crude acetone stream which has acetone and at least one low-boiling impurity with a catalyst to form a treated acetone stream that has acetone and at least one higher-boiling impurity and then distilling the treated acetone stream to remove at least a portion of the higher-boiling impurity to produce a purified acetone stream. This is particularly helpful in processes where a more pure acetone is desired, including a process for making purified isopropanol.
Abstract:
The invention is a process for epoxidizing an olefin with hydrogen and oxygen in a solvent comprising acetonitrile in the presence of an quinone-acid salt and a catalyst comprising a titanium zeolite and a noble metal. The process results in higher productivity and improved selectivity to propylene oxide from hydrogen and oxygen, as compared to processes that use only a quinone.
Abstract:
The invention is a process for epoxidizing an olefin with hydrogen and oxygen in the presence of a catalyst mixture containing a titanium or vanadium zeolite and a supported catalyst comprising palladium, gold, and an inorganic oxide carrier. Prior to its use in the epoxidation process, the supported catalyst is calcined in the presence of oxygen at a temperature from 450 to 800° C. and reduced in the presence of hydrogen at a temperature greater than 20° C. The process results in significantly reduced alkane byproduct formed by the hydrogenation of olefin.
Abstract:
The invention is a process for epoxidizing an olefin with hydrogen and oxygen in the presence of a catalyst mixture containing a titanium or vanadium zeolite and a supported catalyst comprising palladium, rhenium and a carrier. The process results in significantly reduced alkane byproduct formed by the hydrogenation of olefin.
Abstract:
A process is disclosed for the epoxidation of an olefin with hydrogen and oxygen in the presence of an oxidation catalyst comprising a transition metal zeolite, and a noble metal catalyst comprising a noble metal and an ion-exchange resin. The process is highly productive and selective in making epoxides. A noble metal catalyst comprising a cation-exchanged resin further improves the productivity and/or the selectivity of the process.
Abstract:
A process for producing an epoxide comprising reacting an olefin, hydrogen and oxygen in the presence of a catalyst comprising a titanium or vanadium zeolite, palladium, and lead. The process results in significantly reduced alkane by-product formed by the hydrogenation of olefin.
Abstract:
This invention is a process for oxidizing an organic compound with a hydrogen peroxide solution produced by reacting hydrogen and oxygen in the presence of an oxidation catalyst. The hydrogen peroxide is produced by reacting hydrogen and oxygen in a solvent in the presence of a H2O2-producing catalyst comprising a polymer-encapsulated combination of a noble metal and an ion-exchange resin. Polymer encapsulation of the H2O2-producing catalyst improves its productivity in making hydrogen peroxide and is expected to reduce metal loss.
Abstract translation:本发明是一种通过在氧化催化剂存在下使氢和氧反应生成的过氧化氢溶液来氧化有机化合物的方法。 过氧化氢是通过在溶剂中在含有贵金属和离子交换树脂的聚合物封装的组合的H 2 O 2生成催化剂存在下使氢和氧反应来制备的。 产生H2O2的催化剂的聚合物包封提高了其在制备过氧化氢中的生产率,并预期减少金属损失。
Abstract:
A process is disclosed for the epoxidation of an olefin with hydrogen and oxygen in the presence of an oxidation catalyst comprising a transition metal zeolite and a polymer-encapsulated noble metal catalyst. The noble metal catalyst comprises a noble metal and an ion-exchange resin. The process using the polymer-encapsulated noble metal catalyst gives higher epoxide productivity than a process that uses a noble metal catalyst which is not encapsulated by a polymer.
Abstract:
A process for producing an epoxide comprising reacting an olefin, hydrogen and oxygen in the presence of a catalyst comprising a titanium or vanadium zeolite, palladium, and lead. The process results in significantly reduced alkane by-product formed by the hydrogenation of olefin.
Abstract:
The invention is a process for epoxidizing an olefin with hydrogen and oxygen in the presence of a catalyst mixture containing a titanium or vanadium zeolite and a supported catalyst comprising palladium, rhenium and a carrier. The process results in significantly reduced alkane byproduct formed by the hydrogenation of olefin.