Abstract:
Methods, devices and computer program products are disclosed that allow for wireless communication devices to operate more robustly in the slotted mode of operation in the event of network system loss. Specifically, present aspects require the wireless device to move to or remain in the slotted mode of operation as opposed to immediately entering into a system determination/acquisition mode upon failing to acquire an active set pilot during a slotted wake-up. By moving to the slotted mode of operation or providing for additional slotted-wake-ups, a number of attempts at acquiring the active set pilot can be performed before declaring the system as lost, thereby allowing for fading channel conditions to prevail without the need to re-acquire the lost system or otherwise acquire another system. Since the performance of the slotted mode is less power intensive than acquiring or re-acquiring a system, a substantial power savings is realized.
Abstract:
Techniques to efficiently search for a WLAN are described. A terminal receives country information from a wireless wide area network (WWAN), which may be a cellular network or a broadcast network. This country information may be a Mobile Country Code (MCC) that is broadcast by the WWAN. The MCC identifies the country in which the WWAN is deployed. The terminal then performs active scan for a WLAN based on the country information received from the WWAN. For the active scan, the terminal determines a frequency channel and a transmit power level based on the country information. The terminal then transmits a probe request on the frequency channel and at the transmit power level determined based on the country information. The terminal may perform passive scan and/or active scan in accordance with a scan setting.
Abstract:
Techniques for efficient storage and retrieval of Preferred Roaming Lists are disclosed. In one aspect, PRL entries are stored in two tables. One table contains records that are common to two or more PRL entries. Another table stores any information that is unique to a PRL entry, as well as an indicator of which common record is associated with it. The common record is concatenated with the unique information to generate the uncompressed PRL entry. Various other aspects of the invention are also presented. These aspects have the benefit of reducing the memory requirements for storing a PRL. In addition, time required to download the compressed PRL is reduced.
Abstract:
A system and method for determining 1xEV-DO availability for a packet data call in a wireless device is presented. When the wireless device receives a request to initiate a packet data call, the device determines if it currently has access to a preferred 1xEV-DO channel. The determination can be made by consulting a 1xEV-DO availability list stored in persistent memory on the wireless device. If available, the wireless device originates the packet data call on the 1xEV-DO channel. If the device is using a CDMA system that has 1xEV-DO channels but the availability or usability of those channels are unknown, the device polls the signal strength on the 1xEV-DO channels to determine the best 1xEV-DO channel to use for the packet data call. If no 1xEV-DO channel is available or if none of the available 1xEV-DO channels are usable, then the device originates the packet data call on a CDMA channel.
Abstract:
A roaming emulator provides a tool for emulating system determination for monitoring the operation of a wireless communication device (WCD) during system determination. A signal monitoring program and service selection protocol are stored, and a signal emulation module provides a signal emulation output in accordance with a predetermined set of data. A processing module performs a simulation of a service selection procedure based on the service selection protocol and performed in accordance with the signal monitoring program and the signal emulation output. A result of the service selection is provided by an output module. The emulator can provide emulated system scanning based on geographical or market location, and can emulate scenarios when channels from neighboring systems or markets “bleed” into the RF environment of the WCD.
Abstract:
In a mobile station having an acquired wireless communications system, the mobile station performs preliminary searches for more desirable wireless communications systems in between paging channel and quick paging channel assigned slots, while successfully monitoring the mobile station's assigned slots. The mobile station then analyzes the preliminary search results and attempts to acquire the more desirable wireless communications systems that meets preliminary search criteria. The mobile station includes a communications transceiver that facilitates wireless communications with a local base station and processing circuitry adapted to control a slotted operation mode of the mobile station. The processing circuitry is adapted to instruct the communications transceiver to listen for incoming messages from the acquired communications system during slot modes and listen for candidate communications systems during slot-off modes.
Abstract:
One aspect of the invention provides a system, apparatus and method that allow a wireless communication device to intelligently search for and select a communication cell based on a system identifier (SID) and network identifier (NID) order of preference rather than just pilot signal strength. Generally, a mobile device scans a frequency channel associated with the highest preferred SID/NID for pilot signals at different PN offsets. The cell associated with the strongest pilot signal detected is queried to determine whether it belongs to the SID/NID sought. If the selected PN offset belongs to a cell associated with the SID/NID sought then it is used for communications. Otherwise, the SID/NID identification process is repeated for the next strongest PN offset detected on the same frequency channel. If no pilot signals meeting these criteria are found in the frequency channel, the next highest preferred SID/NID is selected and the process is repeated.
Abstract:
A system for providing a dynamic multi-mode service acquisition capability to a subscriber station is provided. The subscriber station is capable of operating in two or more modes of operation. A time to scan condition is indicated while the subscriber station is operating in a current mode of operation having active and inactive states. Responsive thereto, the system stores state information for the current mode of operation, and attempts at least a partial acquisition of communications services in accordance with another mode of operation. The at least partial acquisition attempt is scheduled to be initiated while the subscriber station is operating in the inactive state in the current mode of operation, and completed before the subscriber station transitions back to the active state in the current mode of operation. If the acquisition attempt is successful, the subscriber station transitions to the new mode of operation, maintaining appropriate registration. If unsuccessful, the subscriber station uses the stored state information to resume operating in the current mode of operation.
Abstract:
A mobile station includes client circuitry for facilitating wireless communications with a wireless communications system, and a configurable system selection unit that executes a system selection and acquisition procedure. The configurable system selection unit includes a front end and a system selection core. The front end facilitates communications between the configurable system selection unit and the client circuitry. The system selection core is coupled to the front end and includes a script engine and a nonvolatile memory storing at least one script table. The script table includes a plurality of system selection event conditions and corresponding scripts that define a system selection and acquisition procedure. The script engine is adapted to detect an event condition and execute the corresponding script. The system selection core is adapted to receive a system selection script and store the received script in the script table, thereby altering the system selection and acquisition procedure.
Abstract:
In a mobile station having an acquired wireless communications system, the mobile station performs preliminary searches for more desirable wireless communications systems in between paging channel and quick paging channel assigned slots, while successfully monitoring the mobile station's assigned slots. The mobile station then analyzes the preliminary search results and attempts to acquire the more desirable wireless communications systems that meets preliminary search criteria. The mobile station includes a communications transceiver that facilitates wireless communications with a local base station and processing circuitry adapted to control a slotted operation mode of the mobile station. The processing circuitry is adapted to instruct the communications transceiver to listen for incoming messages from the acquired communications system during slot modes and listen for candidate communications systems during slot-off modes.