摘要:
An electrolyzer cell is disclosed which includes a cathode to reduce an oxygen-containing molecule, such as H2O, CO2, or a combination thereof, to produce an oxygen ion and a fuel molecule, such as H2, CO, or a combination thereof. An electrolyte is coupled to the cathode to transport the oxygen ion to an anode. The anode is coupled to the electrolyte to receive the oxygen ion and produce oxygen gas therewith. In one embodiment, the anode may be fabricated to include an electron-conducting phase having a perovskite crystalline structure or structure similar thereto. This perovskite may have a chemical formula of substantially (Pr(1-x)Lax)(z-y)A′yBO(3-∂), wherein 0
摘要:
A multi-phase proton conducting material comprising a proton-conducting ceramic phase and a stabilizing ceramic phase. Under the presence of a partial pressure gradient of hydrogen across the membrane or under the influence of an electrical potential, a membrane fabricated with this material selectively transports hydrogen ions through the proton conducting phase, which results in ultrahigh purity hydrogen permeation through the membrane. The stabilizing ceramic phase may be substantially structurally and chemically identical to at least one product of a reaction between the proton conducting phase and at least one expected gas under operating conditions of a membrane fabricated using the material. In a barium cerate-based proton conducting membrane, one stabilizing phase is ceria.
摘要:
An improved ceramic interconnect component for a solid oxide fuel cell having good electrical conductivity thermodynamic stability in the presence of fuel and a coefficient of thermal expansion matching closely that of zirconia electrolytes is disclosed. The interconnect is a lanthanum strontium chromate material containing minor quantities of calcia, and iron and, optionally, very minor quantities of cobalt, as dopants.
摘要:
A ceramic electrode for a gliding electric arc system. The ceramic electrode includes a ceramic fin defining a spine, a heel, and a tip. A discharge edge of the ceramic fin defines a diverging profile approximately from the heel of the ceramic fin to the tip of the ceramic fin. A mounting surface coupled to the ceramic fin facilitates mounting the ceramic fin within the gliding electric arc system. One or more ceramic electrodes may be used in the gliding electric arc system or other systems which at least partially oxidize a combustible material.
摘要:
A ceramic electrode for a gliding electric arc system. The ceramic electrode includes a ceramic fin defining a spine, a heel, and a tip. A discharge edge of the ceramic fin defines a diverging profile approximately from the heel of the ceramic fin to the tip of the ceramic fin. A mounting surface coupled to the ceramic fin facilitates mounting the ceramic fin within the gliding electric arc system. One or more ceramic electrodes may be used in the gliding electric arc system or other systems which at least partially oxidize a combustible material.
摘要:
A method is provided for synthesizing synthesis gas from carbon dioxide obtained from atmospheric air or other available carbon dioxide source and water using a sodium-conducting electrochemical cell. Synthesis gas is also produced by the coelectrolysis of carbon dioxide and steam in a solid oxide fuel cell or solid oxide electrolytic cell. The synthesis gas produced may then be further processed and eventually converted into a liquid fuel suitable for transportation or other applications.
摘要:
A method for increasing the reliability of an electrolyzer cell stack includes providing multiple electrolyzer cell stacks. Each electrolyzer cell stack includes multiple cells separated by electrically conductive interconnects. The method may further include generating, using an external power source, an electrical current through each of the electrolyzer cell stacks to produce a fuel. The method may further include electrically connecting an interconnect of a first electrolyzer cell stack to an interconnect of a second electrolyzer cell stack located at a substantially equivalent electrical potential. This allows current to flow from one electrolyzer cell stack to another in the event a cell fails or creates a point of high resistance.
摘要:
An electrolyzer cell is disclosed which includes a cathode to reduce an oxygen-containing molecule, such as H2O, CO2, or a combination thereof, to produce an oxygen ion and a fuel molecule, such as H2, CO, or a combination thereof. An electrolyte is coupled to the cathode to transport the oxygen ion to an anode. The anode is coupled to the electrolyte to receive the oxygen ion and produce oxygen gas therewith. In one embodiment, the anode may be fabricated to include an electron-conducting phase having a perovskite crystalline structure or structure similar thereto. This perovskite may have a chemical formula of substantially (Pr(1-x)Lax)(z-y)A′yBO(3-∂), wherein 0≦x≦0.5, 0≦y≦0.5, and 0.8≦z≦1.1. In another embodiment, the cathode includes an electron-conducting phase that contains nickel oxide intermixed with magnesium oxide.
摘要:
A method of forming a synthesis gas utilizing a reformer is disclosed. The method utilizes a reformer that includes a plasma zone to receive a pre-heated mixture of reactants and ionize the reactants by applying an electrical potential thereto. A first thermally conductive surface surrounds the plasma zone and is configured to transfer heat from an external heat source into the plasma zone. The reformer further includes a reaction zone to chemically transform the ionized reactants into synthesis gas comprising hydrogen and carbon monoxide. A second thermally conductive surface surrounds the reaction zone and is configured to transfer heat from the external heat source into the reaction zone. The first thermally conductive surface and second thermally conductive surface are both directly exposed to the external heat source. A corresponding apparatus and system are also disclosed herein.
摘要:
A method and apparatus for oxidizing a combustible material. The method includes introducing a volume of the combustible material into a plasma zone of a gliding electric arc oxidation system. The method also includes introducing a volume of oxidizer into the plasma zone of the gliding electric arc oxidation system. The volume of oxidizer includes a stoichiometrically excessive amount of oxygen. The method also includes generating an electrical discharge between electrodes within the plasma zone of the gliding electric arc oxidation system to oxidize the combustible material.