Abstract:
An LCD with an integrated touch screen panel includes a first substrate having a plurality of pixels formed thereon, wherein each pixel of the plurality of pixels is provided with a thin film transistor and a pixel electrode. A second substrate faces the first substrate and has a plurality of common electrodes formed inside thereof. The plurality of common electrodes is arranged in a first direction to correspond to the plurality of pixels. A plurality of sensing electrodes is outside of the second substrate and arranged in a second direction intersecting the first direction. A liquid crystal layer is between the first and the second substrates. A common electrode driver sequentially supplies a driving signal to the common electrodes and supplies a compensation signal having a phase opposite to the driving signal to the common electrodes.
Abstract:
A display device and a driving method thereof for reducing power consumption. The display device includes a plurality of pixels positioned at intersection portions of gate lines and data lines; a gate driver selectively driving the gate lines; a data driver supplying, to the data lines, data corresponding to the gate line selected from the gate lines; and a timing controller controlling the gate drive and the data driver. In the display device, the timing controller includes an order determination unit that compares data for each gate line and determines a driving order of the gate lines.
Abstract:
A shift register includes stages to generate gate signals in sequence. Each of the stages includes a first pull up drive control section, a pull up drive section and a pull down drive section. The first pull up drive control section outputs a control signal based on the gate signal of an adjacent stage. The pull up drive section receives a first clock signal and outputs the first clock signal as the gate signal to a corresponding gate line in response to the control signal. The pull down drive section inactivates the corresponding gate line in response to a second clock signal.
Abstract:
A liquid crystal display (LCD) with an integrated touch screen panel includes a plurality of pixels connected to a plurality of data lines and a plurality of gate lines, the gate lines being divided into a plurality of groups, a plurality of sensing electrodes, a plurality of common electrodes divided into a plurality of groups, a common electrode driver configured to simultaneously supply a driving signal to common electrodes within each group of the plurality of groups of the common electrodes, and to sequentially supply the driving signal to the plurality of groups of the common electrodes, and a gate driver configured to sequentially supply a gate signal to gate lines within each of the plurality of group of the gate lines.
Abstract:
A sensing circuit is provided that senses an externally provided pressure on a panel, and includes a sensing capacitor, a first switching element, a second switching element and a third switching element; where the sensing capacitor includes a sensing electrode on the first substrate, the insulating layer and the opposite electrode; the sensing capacitor varies a capacitance based on the externally provided pressure; the first switching element is electrically connected to the sensing electrode to charge the sensing capacitor based on a first switching signal; the second switching element outputs a current based on a second switching signal and a first voltage; the third switching element is electrically connected to the sensing electrode to control the current based on the variation of the capacitance of the sensing capacitor to generate a sensing signal; and where a thickness is decreased, and an image display quality is improved.
Abstract:
A display device according to an embodiment of the present invention includes: a display panel; a plurality of pixels disposed on the display panel; a plurality of sensor data lines disposed on the display panel and disposed between two adjacent pixels; and a plurality of sensing units disposed on the display panel and disposed between two adjacent pixels.
Abstract:
A display apparatus includes; a display panel including a plurality of data lines which receive a data signal, a plurality of gate lines which receive a gate signal and a plurality of pixels, a data driving circuit which provides the data liens with the data signal, and a gate driving circuit which sequentially applies the gate signal to the plurality of gate lines, wherein an area between an ith gate line and an (i+1)th gate line is divided into a plurality of areas by the plurality of data lines, and wherein each area includes first and second pixel areas which are aligned in an extension direction of the data lines, and the first pixel area and the second pixel area are provided with a first pixel connected to the ith gate line and a second pixel connected to the (i+1)th gate line, respectively.
Abstract:
A liquid crystal display (LCD) and a driving method of the same. The LCD includes a liquid crystal capacitor charged with a data voltage during a first turn-on period of a first gate signal, a storage capacitor having one electrode connected to the liquid crystal capacitor and a driving unit which supplies a boost voltage to the other electrode of the storage capacitor during a boost voltage-output period of a boost-control signal. The boost voltage has a first edge and a second edge, the first and second edges occur in the boost voltage-output period, and the first turn-on period occurs between the first and second edges.
Abstract:
A shift register includes a plurality of stages each generating an output signal in sequence and including a buffering section, a driving section, a first charging section, and a charging control section. The buffering section receives one of a scan start signal and an output signal of a previous stage so that the driving section generates the output signal of a present stage. The first charging section includes a first terminal electrically connected to the driving section and a second terminal electrically connected to a first source voltage. The charging control section applies the output signal of a next stage to the first charging section. Therefore, a gradual failure of TFT is reduced.
Abstract:
A liquid crystal display apparatus comprising a liquid crystal display panel and a touch panel is disclosed. A first transparent electrode is disposed on an upper surface of the liquid crystal display panel for displaying an image. A second transparent electrode is disposed on a lower surface of a retardation member and the second transparent electrode is opposite to the first transparent electrode. Accordingly, the entire thickness of the liquid crystal display apparatus may be decreased, and the manufacturing cost of the liquid crystal display apparatus may be reduced.