Abstract:
A driving circuit for driving a diode includes at least one differential pair including a first output node and a second output node and configured to switch an output current, a current source configured to adjust the output current, a dummy load coupled to the second output node, a first termination resistor coupled between the first output node and a termination ground, and a second termination resistor coupled between the second output node and the termination ground. The output current is supplied to the diode through the first output node by at least one differential pair.
Abstract:
A communication terminal apparatus receives a management signal at a bit rate A and a data signal at a bit rate B (B=A×M) through the same line. The communication terminal apparatus includes a signal regenerating unit, a management signal converting unit, a timing control unit, and a data signal obtaining unit. The signal regenerating unit regenerates a signal transmitted through the line as a signal of a bit rate C (C=A×N). The management signal converting unit converts N bits of the regenerated signal into the management signal of one bit. The timing control unit controls timing for obtaining a data signal based on the management signal. The data signal obtaining unit obtains the data signal according to timing control of the timing control unit.
Abstract:
A light modulation device capable of stabilizing a phase set in phase modulation processing and improving optical communication quality. A phase modulator is provided for each of plural branched input lights and performs phase modulation of the input light. A phase shifter is provided at the upstream or downstream of the phase modulator and shifts a phase of the input light or of the phase-modulated light. A light interference section causes the output lights from the light modulator to interfere with each other to generate a multilevel phase modulated signal and interference light having a phase state different from that of the modulated signal. A monitor receives the interference light and outputs an electric signal according to the intensity. A phase shift controller generates a phase control signal based on the electric signal and applies the signal to the shifter to control the phase shift amount to be set by the shifter.
Abstract:
A driving circuit for driving a diode includes at least one differential pair including a first output node and a second output node and configured to switch an output current, a current source configured to adjust the output current, a dummy load coupled to the second output node, a first termination resistor coupled between the first output node and a termination ground, and a second termination resistor coupled between the second output node and the termination ground. The output current is supplied to the diode through the first output node by at least one differential pair.
Abstract:
A signal detecting apparatus detects a signal received based on a current received and includes a detecting unit that detects, in the current received, a peak equal to or higher than a threshold and a time counting unit that counts a given period of time from a point in time of detection of the peak by the detecting unit. The signal detecting apparatus further includes a determining unit that determines whether the detecting unit has detected the peak again within the given period of time counted by the time counting unit. An output unit of the signal detecting apparatus outputs information indicating detection of the signal received when the determining unit determines that the peak has been detected again.
Abstract:
In the condenser provided with two of the degassing chambers separated by a cooling fluid, communication between the degassing chambers is prevented even if a pressure difference is increased between the degassing chambers. The condenser has the housing having the vapor inflow port connectable to the discharge portion of the compressor, the first degassing chamber, in the housing, communicating with the vapor inflow port, and the second degassing chamber, in the housing, arranged above the first degassing chamber across the partition portion, and the passing portion for permitting a cooling fluid to flow from the second degassing chamber to the first degassing chamber, wherein the first degassing chamber is separated from the second degassing chamber by the cooling fluid in the passing portion, and the passing portion has a pressure head space for containing a specified volume of cooling fluid so as to absorb a variation in a pressure difference between the first degassing chamber and the second degassing chamber.
Abstract:
An amplifying unit performs a differential amplification with a highest level or a lowest level of an input signal and a previous input signal. A semiconductor element transfers a signal level output from the amplifying unit from a second terminal to a third terminal by using a current conducted from the second terminal to the third terminal in response to a voltage applied to a first terminal. A control unit controls the voltage applied to the first terminal of the semiconductor element based on a voltage or a current related to a reference semiconductor element. A holding unit holds a signal level output from the third terminal of the semiconductor element.
Abstract:
To take out monitor light unaffected by a multilevel optical phase-modulated component. For the purpose, a phase-shift unit that controls phases of plural (n, n is an integral number equal to or greater than 2) input lights, plural (n, n is an integral number equal to or greater than 2) phase modulating units that respectively phase-modulate the input lights from the phase-shift units, a first coupling unit that couples and outputs the phase-modulated lights from the plural phase modulating units as multilevel optical phase-modulated signal light, and a second coupling unit that couples and outputs non-phase-modulated lights from the plural phase modulating units as coupled light are provided.
Abstract:
A wavelength selective switch module is disclosed. The wavelength selective switch module includes: a unit for generating test light; a multiplexing unit for multiplexing the test light with the wavelength multiplexed light; a splitting unit for splitting the test light from output light of each of two output ports; a feedback control unit for obtaining deflection control amounts for the deflection unit corresponding to a wavelength of the test light such that a light level of the test light that is split from the output light output from each of the two output ports becomes maximum; and a calculation unit for calculating deflection control amounts for output ports other than the two output ports for the deflection unit for the test light and calculating deflection control amounts for output ports for deflection units of wavelengths included in the wavelength multiplexed light using the deflection control amounts for the deflection unit for the test light output from each of the two output ports by which the light level of the test light becomes maximum.
Abstract:
A signal amplification device which uses inexpensive standard CMOS and yet is capable of high-accuracy threshold setting. An offset voltage generator detects the direct-current level of an input signal, and generates a positive or negative offset voltage signal. A peak detector outputs, as a peak value, the positive offset voltage signal if the level thereof is higher than the maximum level of the input signal, or the maximum level of the input signal if the maximum level is higher than the positive offset voltage signal. A bottom detector outputs, as a bottom value, the negative offset voltage signal if the level thereof is lower than the minimum level of the input signal, or the minimum level of the input signal if the minimum level is lower than the negative offset voltage signal. A voltage divider subjects the peak and bottom values to voltage division, to generate a threshold level.