摘要:
Embodiments generally relate to summarizing a photo album in a social network system. In one embodiment, a method includes grouping photos into a plurality of groups of photos, and selecting a plurality of representative photos, where each representative photo represents a respective group from the plurality of groups, where the selecting is based on a quality score of each of the photos, and where each quality score is based on different types of attributes. The method also includes enabling the plurality of representative photos to be shared.
摘要:
Methods and systems disclosed herein provide the capability to automatically process digital pathology images quickly and accurately. According to one embodiment, an digital pathology image segmentation task may be divided into at least two parts. An image segmentation task may be carried out utilizing both bottom-up analysis to capture local definition of features and top-down analysis to use global information to eliminate false positives. In some embodiments, an image segmentation task is carried out using a “pseudo-bootstrapping” iterative technique to produce superior segmentation results. In some embodiments, the superior segmentation results produced by the pseudo-bootstrapping method are used as input in a second segmentation task that uses a combination of bottom-up and top-down analysis.
摘要:
A method for tracking objects includes identifying a target, identifying a plurality of auxiliary objects related to the target, and tracking the target using the plurality of auxiliary objects.
摘要:
An image comprising color pixels with varying illumination is selected. Instances of a repeating pattern in the image are determined. Illumination values for illuminated pixels at locations within instances of the repeating pattern are calculated based on pixel intensities of non-illuminated pixels at corresponding locations in other instances of the repeating pattern. The illumination variation is removed from the illuminated pixels based on the calculated illumination values to produce enhanced pixels. Color from the non-illuminated pixels at the corresponding locations in other instances of the repeating pattern is propagated to the enhanced pixels.
摘要:
An interactive segmentation framework for 3-D teeth CT volumetric data enables a user to segment an entire dental region or individual teeth depending upon the types of user input. Graph cuts-based interactive segmentation utilizes a user's scribbles which are collected on several 2-D representative CT slices and are expanded on those slices. Then, a 3-D distance transform is applied to the entire CT volume based on the expanded scribbles. Bony tissue enhancement is added before feeding 3-D CT raw image data into the graph cuts pipeline. The segmented teeth area is able to be directly utilized to reconstruct a 3-D virtual teeth model.
摘要:
A computing system for detecting objects in an image can perform operations including generating an image pyramid that includes a first level corresponding with the image at a first resolution and a second level corresponding with the image at a second resolution. The operations can include tiling the first level and the second level by dividing the first level into a first plurality of tiles and the second level into a second plurality of tiles; inputting the first plurality of tiles and the second plurality of tiles into a machine-learned object detection model; receiving, as an output of the machine-learned object detection model, object detection data that includes bounding boxes respectively defined with respect to individual ones of the first plurality of tiles and the second plurality of tiles; and generating image object detection output by mapping the object detection data onto an image space of the image.
摘要:
An integrated interactive segmentation with spatial constraint method utilizes a combination of several of the most popular online learning algorithms into one and implements a spatial constraint which defines a valid mask local to the user's given marks. Additionally, both supervised learning and statistical analysis are integrated, which are able to compensate each other. Once prediction and activation are obtained, pixel-wised multiplication is conducted to fully indicate how likely each pixel belongs to the foreground or background.
摘要:
An interactive segmentation framework for 3-D teeth CT volumetric data enables a user to segment an entire dental region or individual teeth depending upon the types of user input. Graph cuts-based interactive segmentation utilizes a user's scribbles which are collected on several 2-D representative CT slices and are expanded on those slices. Then, a 3-D distance transform is applied to the entire CT volume based on the expanded scribbles. Bony tissue enhancement is added before feeding 3-D CT raw image data into the graph cuts pipeline. The segmented teeth area is able to be directly utilized to reconstruct a 3-D virtual teeth model.
摘要:
Systems and methods for implementing a multi-step image recognition framework for classifying digital images are provided. The provided multi-step image recognition framework utilizes a gradual approach to model training and image classification tasks requiring multi-dimensional ground truths. A first step of the multi-step image recognition framework differentiates a first image region from a remainder image region. Each subsequent step operates on a remainder image region from the previous step. The provided multi-step image recognition framework permits model training and image classification tasks to be performed more accurately and in a less resource intensive fashion than conventional single-step image recognition frameworks.
摘要:
Systems and methods for implementing a superpixel image segmentation technique using a boundary preserving distance metric are disclosed. The disclosed technique segments a digital image into superpixels comprising contiguous pixel regions sharing similar characteristics. Superpixel image segmentation techniques presented herein utilize a boundary preserving distance metric. A boundary preserving distance metric presented herein measures the similarity between two pixels of a digital image at least partially based on a boundary probability values of the two pixels and surrounding pixels.