Abstract:
A HKMG device with PMOS eSiGe source/drain regions is provided. Embodiments include forming first and second HKMG gate stacks on a substrate, forming a nitride liner and oxide spacers on each side of each HKMG gate stack, performing halo/extension implants at each side of each HKMG gate stack, forming an oxide liner and nitride spacers on the oxide spacers of each HKMG gate stack, forming deep source/drain regions at opposite sides of the second HKMG gate stack, forming an oxide hardmask over the second HKMG gate stack, forming embedded silicon germanium (eSiGe) at opposite sides of the first HKMG gate stack, and removing the oxide hardmask.
Abstract:
A method of fabricating a semiconductor device with improved Vt and the resulting device are disclosed. Embodiments include forming an HKMG stack on a substrate; implanting dopants in active regions of the substrate; and performing an RTA in an environment of nitrogen and no more than 30% oxygen.
Abstract:
A processing layer, such as silicon, is formed on a metal silicide contact followed by a metal layer. The silicon and metal layers are annealed to increase the thickness of the metal silicide contact. By selectively increasing the thickness of silicide contacts, Rs of transistors in iso and nested regions can be matched.
Abstract:
A HKMG device with PMOS eSiGe source/drain regions is provided. Embodiments include forming first and second HKMG gate stacks on a substrate, each including a SiO2 cap, forming extension regions at opposite sides of the first HKMG gate stack, forming a nitride liner and oxide spacers on each side of HKMG gate stack; forming a hardmask over the second HKMG gate stack; forming eSiGe at opposite sides of the first HKMG gate stack, removing the hardmask, forming a conformal liner and nitride spacers on the oxide spacers of each of the first and second HKMG gate stacks, and forming deep source/drain regions at opposite sides of the second HKMG gate stack.
Abstract:
In one example, a method disclosed herein includes the steps of forming a first liner layer above a substrate and above gate structures for both a PMOS transistor and an NMOS transistor, and, after forming extension implant regions and halo implant regions, forming a first spacer proximate the gate structures of both the PMOS and NMOS transistors, forming deep source/drain implant regions in the substrate for the PMOS and NMOS transistors, removing the first spacer and, after removing the first spacer, forming a layer of material between the adjacent gate structures, wherein the layer of material occupies at least the space formerly occupied by the first spacer.
Abstract:
A first example embodiment comprises the following steps and the structure formed therefrom. A trench having opposing sidewalls is formed within a substrate. A stress layer having an inherent stress is formed over the opposing trench sidewalls. The stress layer having stress layer sidewalls over the trench sidewalls. Ions are implanted into one or more portions of the stress layer to form ion-implanted relaxed portions with the portions of the stress layer that are not implanted are un-implanted portions, whereby the inherent stress of the one or more ion-implanted relaxed portions of stress layer portions is relaxed.
Abstract:
An integrated circuit system that includes: providing a substrate including a first integrated circuit region electrically connected to a second integrated circuit region; implanting a dielectric growth material underneath a gate for each of an NFET device and a PFET device within the first integrated circuit region and the second integrated circuit region; and annealing the integrated circuit system.
Abstract:
A method for incorporating carbon into a wafer at the interstitial a-c silicon interface of the halo doping profile is achieved. A bulk silicon substrate is provided. A carbon-doped silicon layer is deposited on the bulk silicon substrate. An epitaxial silicon layer is grown overlying the carbon-doped silicon layer to provide a starting wafer for the integrated circuit device fabrication. An integrated circuit device is fabricated on the starting wafer by the following steps. A gate electrode is formed on the starting wafer. LDD and source and drain regions are implanted in the starting wafer adjacent to the gate electrode. Indium is implanted to form halo implants adjacent to the LDD regions and underlying the gate electrode wherein the halo implants extend to an interface between the epitaxial silicon layer and the carbon-doped silicon layer wherein carbon ions in the carbon-doped silicon layer act as a silicon interstitial sink for silicon interstitials formed by the halo implants to prevent end of range secondary defect formation.
Abstract:
A method for incorporating carbon into a wafer at the interstitial a-c silicon interface of the halo doping profile is achieved. A bulk silicon substrate is provided. A carbon-doped silicon layer is deposited on the bulk silicon substrate. An epitaxial silicon layer is grown overlying the carbon-doped silicon layer to provide a starting wafer for the integrated circuit device fabrication. An integrated circuit device is fabricated on the starting wafer by the following steps. A gate electrode is formed on the starting wafer. LDD and source and drain regions are implanted in the starting wafer adjacent to the gate electrode. Indium is implanted to form halo implants adjacent to the LDD regions and underlying the gate electrode wherein the halo implants extend to an interface between the epitaxial silicon layer and the carbon-doped silicon layer wherein carbon ions in the carbon-doped silicon layer act as a silicon interstitial sink for silicon interstitials formed by the halo implants to prevent end of range secondary defect formation.
Abstract:
One illustrative method disclosed herein includes forming a plurality of layers of material above a semiconducting substrate, wherein the plurality of layers of material will comprise a gate structure for a transistor, performing a fluorine ion implantation process to implant fluorine ions into at least one of the plurality of layers of material, performing at least one ion implantation process to implant one of a P-type dopant material or an N-type dopant material into the substrate to form source/drain regions for the transistor, and performing an anneal process after the fluorine ion implantation process and the at least one ion implantation process have been performed.