摘要:
In one embodiment, a method includes drilling a wellbore in a formation with a drilling tool. The method further includes receiving electromagnetic radiation at an opto-analytical device coupled to the drilling tool. The method also includes determining a drilling characteristic based on the received electromagnetic radiation, and detecting an event associated with drilling the wellbore based on the determined drilling characteristic.
摘要:
Downhole drilling tools designed and manufactured to reduce bit axial force and torque and to enhance drilling efficiency comprising laying out some cutters in one spiral direction of rotation about a bit rotational axis and other cutters in an opposite spiral direction of rotation; evaluating forces acting on cutters during simulated engagement with a downhole formation (straight and transitional drilling); and modifying cutter layout with respect to a spiral direction of rotation. Some embodiments further comprise, prior to simulation, placing cutters in cutter groups/sets at respective locations to obtain a level of force balance. Multilevel force balanced downhole drilling tools may be designed using five respective simulations: cutter group level, neighbor cutter group level, cutter set level, group of N (N=3 or N=4) consecutive cutters level and all cutters level. Cutter layout procedures and algorithms to minimize respective bit forces and in some embodiments to obtain force balance are described.
摘要:
Downhole drilling tools designed and manufactured to minimize or reduce imbalance forces and wear by disposing cutting elements in cutter groups and cutter sets in a level of force balance and by placing impact and/or wear resistant cutters on blades subject to high impact forces and/or large loadings. Manufacturing costs may be reduced by placing inexpensive cutters on blades not subject to high impact forces and/or loadings. Some embodiments comprise designing downhole tools with combinations of thicker blades to receive high impact forces and/or loadings with thinner blades. Some embodiments comprise designing downhole drilling tools with optimized fluid-flow properties. Designing methods may comprise performing simulations on a designed tool, evaluating respective forces acting on cutters during simulated engagement with a downhole (uniform and transitional) and/or evaluating wear on cutters and bit, and/or CFD simulations to evaluate fluid-flow optimization on a tool. Various cutter layout procedures and algorithms are described.
摘要:
Downhole drilling tools designed and manufactured to minimize or reduce imbalance forces and wear by disposing cutting elements in cutter groups and cutter sets in a level of force balance and by placing impact and/or wear resistant cutters on blades subject to high impact forces and/or large loadings. Manufacturing costs may be reduced by placing inexpensive cutters on blades not subject to high impact forces and/or loadings. Some embodiments comprise designing downhole tools with combinations of thicker blades to receive high impact forces and/or loadings with thinner blades. Some embodiments comprise designing downhole drilling tools with optimized fluid-flow properties. Designing methods may comprise performing simulations on a designed tool, evaluating respective forces acting on cutters during simulated engagement with a downhole (uniform and transitional) and/or evaluating wear on cutters and bit, and/or CFD simulations to evaluate fluid-flow optimization on a tool. Various cutter layout procedures and algorithms are described.
摘要:
A multi-layer downhole drilling tool designed for drilling a wellbore including a plurality of formations is disclosed. The drilling tool includes a bit body including a rotational axis extending therethrough. A plurality of blades are disposed on exterior portions of the bit body. A plurality of primary cutting elements and a plurality of back-up cutting elements are disposed on exterior portions of the plurality of blades. The back-up cutting elements are track set with corresponding primary cutting elements, and each back-up cutting element is disposed on a different blade than the corresponding primary cutting element.
摘要:
A design process and resulting bit structure is provided for drill bits wherein cutter geometries on the face of the bit are tailored to optimize the distribution of one or more of forces, torque, work, or power of each cutter relative to other cutters. Balanced are the forces, torque, work, or power generated by each cutter in respect to other cutters that are working within the same region of cut, so that all cutters within the same region of cut are generating sufficiently comparable forces, torque, work, or power. In this manner all of the cutters on the bit may share as closely as possible the work and loads required to penetrate the subterranean rock. The design process produces a bit structure in which each cutter is doing similar levels of work or creating similar levels of force, torque, or power relative to other cutters within the same region of cut on the bit, within specified ranges of design criteria.
摘要:
Methods and systems may be provided to simulate forming a wide variety of directional wellbores including wellbores with variable tilt rates, relatively constant tilt rates, wellbores with uniform generally circular cross-sections and wellbores with non-circular cross-sections. The methods and systems may also be used to simulate forming a wellbore in subterranean formations having a combination of soft, medium and hard formation materials, multiple layers of formation materials, relatively hard stringers disposed throughout one or more layers of formation material, and/or concretions (very hard stones) disposed in one or more layers of formation material. Values of bit walk rate from such simulations may be used to design and/or select drilling equipment for use in forming a directional wellbore.
摘要:
Methods and systems may be provided to simulate forming a wide variety of directional wellbores including wellbores with variable tilt rates, relatively constant tilt rates, wellbores with uniform generally circular cross-sections and wellbores with non-circular cross-sections. The methods and systems may also be used to simulate forming a wellbore in subterranean formations having a combination of soft, medium and hard formation materials, multiple layers of formation materials, relatively hard stringers disposed throughout one or more layers of formation material, and/or concretions (very hard stones) disposed in one or more layers of formation material. Values of bit walk rate from such simulations may be used to design and/or select drilling equipment for use in forming a directional wellbore.
摘要:
Methods and systems may be provided simulating forming a wide variety of directional wellbores including wellbores with variable tilt rates and/or relatively constant tilt rates. The methods and systems may also be used to simulate forming a wellbore in subterranean formations having a combination of soft, medium and hard formation materials, multiple layers of formation materials and relatively hard stringers disposed throughout one or more layers of formation material. Values of bit walk rate from such simulations may be used to design and/or select drilling equipment for use in forming a directional wellbore.
摘要:
A rotary drill bit having blades with cutting elements disposed on exterior portions thereof may be formed with either a continuous cutting zone or a substantially continuous cutting zone between the last cutting element on each blade and an adjacent gage pad. Such rotary drill bits may have improved steerability during the formation of a directional wellbore and/or may experience substantially reduced wear on gage pads and/or portions of each blade adjacent to respective gage pads. For some rotary drill bits an additional cutter may be disposed in one or more gage pads adjacent to the last cutting element. For other rotary drill bits a gage cutter may be disposed between and in close proximity to both the last cutting element and adjacent portions of the associated gage pad.