Abstract:
Embodiments of the present invention provide a method, system and computer program product for the data splitting of recursive data structures. In one embodiment of the invention, a method for data splitting recursive data structures can be provided. The method can include identifying data objects of a recursive data structure type, such as a linked list, within source code, the recursive data structure type defining multiple different data fields. The method further can include grouping the data objects into some memory pool units, each of which can contain the same number of data objects. Each memory pool unit can be seen as an array of data objects. The method can include data splitting, which could be maximal array splitting in each different memory pool unit. Finally, the method can include three different approaches, including field padding, field padding and field splitting, to handle irregular field sizes in the data structure.
Abstract:
Inter-procedural strength reduction is provided by a mechanism of the present invention to optimize software program. During a forward pass, the present invention collects information of global variables and analyzes the information to select candidate computations for optimization. During a backward pass, the present invention replaces costly computations with less costly or weaker computations using pre-computed values and inserts store operations of new global variables to pre-compute the costly computations at definition points of the global variables used in the costly computations.
Abstract:
A computer implemented method, apparatus, and computer program product for compiling source code. The source code is scanned to identify a candidate region. A procedure control descriptor is corresponding to the candidate region is generated. The procedure control descriptor identifies, for the candidate region, a condition which, if true at runtime means that the candidate region can be specialized. Responsive to a determination during compile time that satisfaction of at least one condition will be known only at runtime, the procedure control descriptor is used to specialize the candidate region at compile time to create a first version of the candidate region for execution in a case where the condition is true and a second version of the candidate region for execution in a case where the condition is false. Also responsive to the determination, code is further generated to correctly select one of the first region and the second region at runtime.
Abstract:
Optimizing program code in a static compiler by determining the live ranges of variables and determining which live ranges are candidates for moving code from the use site to the definition site of source code. Live ranges for variables in a flow graph are determined. Selected live ranges are determined as candidates in which code will be moved from a use site within the source code to a definition site within the source code. Optimization opportunities within the source code are identified based on the code motion.
Abstract:
May-constant propagation is a technique used to propagate a constant through the call graph and control flow graph by ignoring possible kills and re-definitions with low probability. Variables associated with constants in program code are determined. Execution flow probabilities are executed for code segments of the program code that comprise the variables. The execution flow probabilities are calculated based on flow data for the program code. At least a first of the code segments is determined to have a high execution flow probability. The first of the constants associated with the first variable are propagated through the flow data to generate modified flow data.
Abstract:
A computer implemented method, system and computer program product for accessing threadprivate memory for threadprivate variables in a parallel program during program compilation. A computer implemented method for accessing threadprivate variables in a parallel program during program compilation includes aggregating threadprivate variables in the program, replacing references of the threadprivate variables by indirect references, moving address load operations of the threadprivate variables, and replacing the address load operations of the threadprivate variables by calls to runtime routines to access the threadprivate memory. The invention enables a compiler to minimize the runtime routines call times to access the threadprivate variables, thus improving program performance.
Abstract:
Method, system and computer program product for converting integers to floating point values in a data processing system. The method utilizes data flow analysis and control flow analysis to recognize that a particular integer that is to be converted contains only a limited range of values. Knowledge of this limited range is used to establish a table of floating point values indexed by the integer value. By using the table of floating point values, conversion of an integer to a floating point value can be performed faster and with reduced memory traffic.
Abstract:
A method of compiling source code. The method includes converting pointer-based access in the source code to array-based access in the source code in a first pass compilation of the source code. Information is collected for objects in the source code during the first pass compilation. Candidate objects in the source code are selected based on the collected information to form selected candidate objects. Global stride variables are created for the selected candidate objects. Memory allocation operations are updated for the selected candidate objects in a second pass compilation of the source code. Multiple-level pointer indirect references are replaced in the source code with multi-dimensional array indexed references for the selected candidate objects in the second pass compilation of the source code.
Abstract:
A method for handling Simple Instruction Multiple Data (SIMD) architecture restrictions through data reshaping, padding, and alignment, including: building a global call graph; creating array descriptors for maintaining array attributes; gathering array affinity information; performing global pointer analysis and escape analysis; performing loop-based analysis to identify a SIMD opportunity; building an array affinity graph; performing graph partitioning on the array affinity graph to construct an array reshaping plan; performing data reshaping on the array affinity graph; and performing SIMDization on the array affinity graph wherein SIMDization comprises automatic generation of SIMD code.
Abstract:
A computer implemented method, system and computer program product for accessing threadprivate memory for threadprivate variables in a parallel program during program compilation. A computer implemented method for accessing threadprivate variables in a parallel program during program compilation includes aggregating threadprivate variables in the program, replacing references of the threadprivate variables by indirect references, moving address load operations of the threadprivate variables, and replacing the address load operations of the threadprivate variables by calls to runtime routines to access the threadprivate memory. The invention enables a compiler to minimize the runtime routines call times to access the threadprivate variables, thus improving program performance.