Abstract:
An image enhancement apparatus is provided. The image enhancement apparatus includes a global contrast curve generator, a local contrast curve generator and an image generator. The global contrast curve generator generates a global contrast curve for an input image according to a global histogram of the input image. The local contrast curve generator generates a local contrast curve for each image partition within the input image according to the global contrast curve and further a feature of the image partition. The image generator generates an output image by enhancing a contrast of each image partition according to the local contrast curve for the image partition and the input image, and merging the enhanced image partitions.
Abstract:
An image enhancement apparatus is provided. The image enhancement apparatus includes a global tone mapping curve generator, a local tone mapping curve generator, a reference gamma voltage generator and an image generator. The global tone mapping curve generator generates a global tone mapping curve for an input image according to global characteristic(s) of the input image. The local tone mapping curve generator generates a local tone mapping curve for each image partition within the input image according to the global tone mapping curve and further a feature of the image partition. The reference gamma voltage generator generates a plurality of reference gamma voltages for each image partition according to the corresponding local tone mapping curve for the image partition. The image generator generates an output image according to the reference gamma voltages of the image partitions and the input image.
Abstract:
This invention provides a calibration method and a corresponding apparatus for optical imaging lens system with double optical paths. The apparatus for optical imaging lens system with double optical paths comprises a first optical subsystem, a second optical subsystem and a calibration module. The calibration module receives a first image data from the first optical subsystem and a second image data from the second optical subsystem. The calibration module calibrates the first image data according to at least one selected optical parameter of the second optical subsystem, and calibrates the second image data according to at least one selected optical parameter of the first optical subsystem. The selected optical parameters of the first optical subsystem and the second optical subsystem are different.
Abstract:
A digital image tone remapping method is disclosed. The method includes computing an average luminance value of a digital image; generating a preliminary tone mapping function according to the average luminance value; generating a luminance statistic of the digital image; determining new remapped values for a plurality of skeleton luminance values according to the preliminary tone mapping function and the luminance statistic; generating a final tone mapping function according to the new remapped values and the plurality of skeleton luminance values; and remapping the digital image through the final tone mapping function. The present invention also discloses an apparatus performing the method.
Abstract:
An apparatus includes an extractor, a first subtractor, a second subtractor, a third subtractor, an offset generator and an adder. The extractor receives the color pixel and to provides a first, a second, and a third image value, wherein the first, the second, and the third image values are associated with the brightness of the color pixel. The first subtractor calculates a first offset between the first image value and a first expected image value. The second subtractor calculates a first difference between the first and the second image values. The third subtractor calculates a second difference between the first and the third image values. The offset generator defines a linear relation based on the first offset and the first image value, and generates a second and a third offset. The adder receives the second offset, the third offset, the second image value and the third image value to generate a second and a third expected image value.
Abstract:
An image enhancement apparatus is provided. The image enhancement apparatus includes a global tone mapping curve generator, a local tone mapping curve generator, a reference gamma voltage generator and an image generator. The global tone mapping curve generator generates a global tone mapping curve for an input image according to global characteristic(s) of the input image. The local tone mapping curve generator generates a local tone mapping curve for each image partition within the input image according to the global tone mapping curve and further a feature of the image partition. The reference gamma voltage generator generates a plurality of reference gamma voltages for each image partition according to the corresponding local tone mapping curve for the image partition. The image generator generates an output image according to the reference gamma voltages of the image partitions and the input image.
Abstract:
A method of image processing and a device thereof are provided in the present invention. First, an image having a plurality of regions is received, wherein each region comprises a plurality of pixels. A contrast process is performed on each region and a respective local curve of each region is analyzed, wherein the local curve is a corresponding relation between the gray-level values of the pixels in each region before and after the contrast process. Next, the gray-level value of one of the pixels in a boundary between one of the regions and the neighboring region is adjusted according to the respective local curves of the one of the regions and the neighboring region. The local contrast process towards to each region is performed for enhancing the image. Therefore, not only can the features be obvious, but the non-uniform area in the boundary between the regions also can be smoothed.
Abstract:
A frame rate up-conversion (FRUC) based dynamic backlight control (DBLC) system and method are disclosed. A frame rate up-conversion (FRUC) unit increases frame rate by adding at least one image frame in a video display, and a dynamic backlight control (DBLC) unit adjusts backlight luminance in the video display. The DBLC unit operates at an original frame rate, and adjusts the backlight luminance for the added image frame according to statistical information about the added image frame derived from the FRUC unit.
Abstract:
A scanner including a light source, an optical module, a driving device, and a control unit is provided. The light source emits a light beam to the to-be-scanned document. The optical module includes a photo sensing device for receiving the light beam reflected by the to-be-scanned document. The driving device includes a position detecting device, for detecting a position of the optical module relative to the to-be-scanned document, and outputting a position feedback signal accordingly. The control unit includes a light source controller and a timer. The scanning method includes the steps of setting the value of K to 1; moving the optical module to read the Kth scan line and adjusting the luminance of the light source to compensate exposure level of the (K+1)th scan line; and determining if K is smaller than N.
Abstract:
A method for simultaneously capturing images of multiple areas is applied to an image processing device. The method includes scanning a document and obtaining a preview image of the document; providing N scan windows for selecting N to-be-scanned areas from the preview image, wherein N is an integer; setting N scan resolutions respectively for the N scan windows; scanning the document; and outputting N scan images corresponding to the N scan windows according to N frequencies of a timing signal corresponding to the N scan resolutions.