Abstract:
A solid-state imaging apparatus including pixels each including a photoelectric conversion element, and a light shielding layer covering the photoelectric conversion element is provided. For each of the photoelectric conversion elements, the light shielding layer includes a light shielding portion which shields a portion of incident light to the photoelectric conversion element, and an aperture which passes another portion of the incident light. The pixels include first and second pixels which have different areas on a planar view of the photoelectric conversion element. The area of the photoelectric conversion element in the first pixel is larger than the area of the photoelectric conversion element in the second pixel on the planar view. An area of the light shielding portion included in the first pixel is larger than an area of the light shielding portion included in the second pixel.
Abstract:
A solid-state imaging apparatus comprising a plurality of pixels each including a photoelectric conversion element, and a light shielding layer which covers the photoelectric conversion element is provided. The light shielding layer comprises a first light shielding portion which covers at least part of a region between the photoelectric conversion elements that are adjacent to each other, and a second light shielding portion for partially shielding light incident on the photoelectric conversion element of each of the plurality of pixels. An aperture is provided for the light shielding layer, the remaining component of the incident light passing through the aperture. A shape of the aperture includes a cruciform portion including a portion extending in a first direction and a portion extending in a second direction that intersects the first direction.
Abstract:
A solid-state imaging apparatus includes a pixel array in which a plurality of unit cells are arranged to form a plurality of rows and a plurality of columns, wherein each of the plurality of unit cells includes a pixel, and the pixel comprising a photoelectric conversion element and an in-pixel readout circuit which outputs a signal corresponding to charges generated in the photoelectric conversion element, power is supplied to the plurality of unit cells via a power supply line and a ground line, and at least one of the plurality of unit cells includes at least a part of a capacitive element having a first electrode connected to the power supply line and a second electrode connected to the ground line.
Abstract:
A solid-state imaging apparatus including a plurality of pixels each having a photoelectric conversion element, and an amplifier circuit which amplifies and outputs signals of the plurality of pixels is provided. The plurality of pixels include a first pixel having a first photoelectric conversion element with a first sensitivity and a second pixel having a second photoelectric conversion element with a second sensitivity higher than the first sensitivity. The amplifier circuit amplifies a signal output from the first pixel by a first gain and a signal output from the second pixel by a second gain smaller than the first gain.
Abstract:
Provided is an organic light-emitting apparatus which can allow each of a plurality of organic light-emitting elements of different emission colors to emit light under optimum conditions. The organic light-emitting apparatus includes: a substrate; a plurality of organic light-emitting elements of different emission colors disposed on the substrate and each having formed sequentially on the substrate, a first electrode formed independently for each of the plurality of organic light-emitting elements, an organic functional layer, and a light-transmissive second electrode continuously formed extending over the plurality of organic light-emitting elements; a conductive layer formed between the substrate and the first electrode and electrically connected to the second electrode; and an insulating layer formed between the conductive layer and the first electrode, in which the insulating layer is different in at least one of thickness and material for each of the different emission colors.
Abstract:
A solid-state imaging apparatus includes a pixel array in which a plurality of unit cells are arranged to form a plurality of rows and a plurality of columns, wherein each of the plurality of unit cells includes a pixel, and the pixel comprising a photoelectric conversion element and an in-pixel readout circuit which outputs a signal corresponding to charges generated in the photoelectric conversion element, power is supplied to the plurality of unit cells via a power supply line and a ground line, and at least one of the plurality of unit cells includes at least a part of a capacitive element having a first electrode connected to the power supply line and a second electrode connected to the ground line.
Abstract:
An image pickup apparatus includes a plurality of pixels each including a read-out node to which an electric charge generated in a photoelectric conversion unit is transferred, an output unit configured to convert the electric charge transferred to the read-out node into a voltage and output the resultant voltage to a signal line, and a switch including a first node electrically connected to the read-out node. Each switch includes a second node different from the first node, and a particular number of second nodes are electrically connected to a common bypass wiring.
Abstract:
A solid-state imaging apparatus has a pixel array in which a plurality of pixels are arranged to form a plurality of rows and a plurality of columns, and a plurality of column signal lines are arranged, wherein each of the plurality of pixels includes a photoelectric converter including a first well formed in a semiconductor substrate and having a first conductivity type, and an impurity region arranged in the first well and having a second conductivity type different from the first conductivity type, and an in-pixel readout circuit which outputs, to the column signal line, a signal corresponding to charges generated in the photoelectric converter, the in-pixel readout circuit including a circuit element arranged in a second well having the first conductivity type, and wherein the first well and the second well are isolated by a semiconductor region having the second conductivity type.
Abstract:
A solid-state imaging apparatus comprising a plurality of pixels each including a photoelectric conversion element, and a light shielding layer which covers the photoelectric conversion element is provided. The light shielding layer comprises a first light shielding portion which covers at least part of a region between the photoelectric conversion elements that are adjacent to each other, and a second light shielding portion for partially shielding light incident on the photoelectric conversion element of each of the plurality of pixels. An aperture is provided for the light shielding layer, the remaining component of the incident light passing through the aperture. A shape of the aperture includes a cruciform portion including a portion extending in a first direction and a portion extending in a second direction that intersects the first direction.
Abstract:
A copper foil for a printed circuit board has a rust preventing layer formed by a trivalent chromium chemical conversion treatment on a surface of the copper foil that the copper foil is bonded to a base material for the printed circuit board. T copper foil is of copper or copper alloy, and the rust preventing layer contains 0.5 to 2.5 μg/cm2 of chromium converted into metallic chromium.