摘要:
A GaN single crystal 20 is grown on a crystal growth surface of a seed crystal (GaN layer 13) through the flux method in a nitrogen (N2) atmosphere at 3.7 MPa and 870° C. employing a flux mixture including Ga, Na, and Li at about 870° C. Since the back surface of the template 10 is R-plane of the sapphire substrate 11, the template 10 is readily corroded or dissolved in the flux mixture from the back surface thereof. Therefore, the template 10 is gradually dissolved or corroded from the back surface thereof, resulting in separation from the semiconductor or dissolution in the flux. When the GaN single crystal 20 is grown to a sufficient thickness, for example, about 500 μm or more, the temperature of the crucible is maintained at 850° C. to 880° C., whereby the entirety of the sapphire substrate 11 is dissolved in the flux mixture.
摘要:
Objects of the invention are to further enhance crystallinity and crystallinity uniformity of a semiconductor crystal produced through the flux method, and to effectively enhance the production yield of the semiconductor crystal. The c-axis of a seed crystal including a GaN single-crystal layer is aligned in a horizontal direction (y-axis direction), one a-axis of the seed crystal is aligned in the vertical direction, and one m-axis is aligned in the x-axis direction. Thus, three contact points at which a supporting tool contacts the seed crystal are present on m-plane. The supporting tool has two supporting members, which extend in the vertical direction. One supporting member has an end part, which is inclined at 30° with respect to the horizontal plane α. The reasons for supporting a seed crystal at m-plane thereof are that m-plane exhibits a crystal growth rate, which is lower than that of a-plane, and that desired crystal growth on c-plane is not inhibited. Actually, a plurality of seed crystals and supporting tools are periodically placed along the y-axis direction.
摘要:
An object of the invention is to carry out the flux method with improved work efficiency while maintaining the purity of flux at high level and saving flux material cost. The sodium-purifying apparatus includes a sodium-holding-and-management apparatus for maintaining purified sodium (Na) in a liquid state. Liquid sodium is supplied into a sodium-holding-and-management apparatus through a liquid-sodium supply piping maintained at 100° C. to 200° C. The sodium-holding-and-management apparatus further has an argon-gas-purifying apparatus for controlling the condition of argon (Ar) gas that fills the internal space thereof. Thus, by opening and closing a faucet at desired timing, purified liquid sodium (Na) supplied from the sodium-purifying apparatus can be introduced into a crucible as appropriate via the liquid-sodium supply piping, the sodium-holding-and-management apparatus, and the piping.
摘要:
In the flux method, a source nitrogen gas is sufficiently heated before feeding to an Na—Ga mixture.The apparatus of the invention is provided for producing a group III nitride based compound semiconductor The apparatus includes a reactor which maintains a group III metal and a metal differing from the group III metal in a molten state, a heating apparatus for heating the reactor, an outer vessel for accommodating the reactor and the heating apparatus, and a feed pipe for feeding a gas containing at least nitrogen from the outside of the outer vessel into the reactor. The feed pipe has a zone for being heated together with the reactor by means of the heating apparatus, wherein the zone is heated inside the outer vessel and outside the reactor.
摘要:
The invention provides a group III nitride semiconductor manufacturing system which is free from interruption to rotation of a rotational shaft. The group III nitride semiconductor manufacturing system has a reacting vessel having an opening, a crucible disposed in an interior of the reaction vessel and containing a melt including at least a group III metal and an alkali metal, a holding unit supporting the crucible and having a rotational shaft extending from the interior of the reaction vessel to an exterior of the reaction vessel through the opening, a rotational shaft cover covering a part of the rotational shaft positioned at the exterior of the reacting vessel and connected to the reacting vessel at the opening, a rotational driving unit disposed at an outside of the reacting vessel and regulating the rotational shaft and a supply pipe connected to the rotational shaft cover and supplying a gas including at least nitrogen into a gap between the rotational shaft and the rotational shaft cover, wherein the gas and the melt react to grow a group III nitride semiconductor crystal.
摘要:
The present invention provides a method for producing a Group III nitride compound semiconductor crystal, the semiconductor crystal being grown through the flux method employing a flux. At least a portion of a substrate on which the semiconductor crystal is to be grown is formed of a flux-soluble material. While the semiconductor crystal is grown on a surface of the substrate, the flux-soluble material is dissolved in the flux from a surface of the substrate that is opposite the surface on which the semiconductor crystal is grown. Alternatively, after the semiconductor crystal has been grown on a surface of the substrate, the flux-soluble material is dissolved in the flux from a surface of the substrate that is opposite the surface on which the semiconductor crystal has been grown. The flux-soluble material is formed of silicon. Alternatively, the flux-soluble material or the substrate is formed of a Group III nitride compound semiconductor having a dislocation density higher than that of the semiconductor crystal to be grown.
摘要:
The back surface of a semiconductor crystal substrate 102 which has a thickness of about 150 μm and is made of undoped GaN bulk crystal consists of a polished plane 102a which is flattened through dry-etching and a grinded plane 102b which is formed in a taper shape and is flattened through dry-etching. On about 10 nm in thickness of GaN n-type clad layer (low carrier concentration layer) 104, about 2 nm in thickness of Al0.005In0.045Ga0.95N well layer 51 and about 18 nm in thickness of Al0.12Ga0.88N barrier layer 52 are deposited alternately as an active layer 105 which emits ultraviolet light and has MQW structure comprising 5 layers in total. Before forming a negative electrode (n-electrode c) on the polished plane of the semiconductor substrate a, the polished plane is dry-etched.
摘要翻译:半导体晶体基板102的背面,其厚度为约150μm,由未掺杂的GaN体晶体制成,其由经干蚀刻而平坦化的抛光平面102a和形成在其中的研磨平面102b 锥形,并通过干蚀刻变平。 在GaN n型覆层(低载流子浓度层)104的厚度约为10nm的情况下,厚度为约0.01nm的Al 0.005 In 0.95 Ga 0.95 N阱层51和厚度约为18nm的Al 0.12 N Ga 0.88 N阻挡层52交替地沉积为发射紫外光的有源层105和 总共有5层MQW结构。 在半导体衬底a的抛光平面上形成负电极(n电极c)之前,对该抛光平面进行干式蚀刻。
摘要:
When a substrate layer (desired semiconductor crystal) made of a group III nitride compound is grown on a base substrate comprising a lot of projection parts, a cavity in which a semiconductor crystal is not deposited may be formed between each projection part although it depends on conditions such as the size of each projection part, arranging interval between each projection part and crystal growth. So when the thickness of the substrate layer is sufficiently larger compared with the height of the projection part, inner stress or outer stress become easier to act intensively to the projection part. As a result, such stress especially functions as shearing stress toward the projection part. When the shearing stress becomes larger, the projection part is ruptured. So utilizing the shearing stress enables to separate the base substrate and the substrate layer easily. The larger the cavities are formed, the more stress tends to concentrate to the projection parts, to thereby enable to separate the base substrate and the substrate layer more securely.
摘要:
Disclosed herein are (1) a light-emitting semiconductor device that uses a gallium nitride compound semiconductor (AlxGa1−xN) in which the n-layer of n-type gallium nitride compound semiconductor (AlxGa1−xN) is of double-layer structure including an n-layer of low carrier concentration and an n+-layer of high carrier concentration, the former being adjacent to the i-layer of insulating gallium nitride compound semiconductor (AlxGa1−xN); (2) a light-emitting semiconductor device of similar structure as above in which the i-layer is of double-layer structure including an iL-layer of low impurity concentration containing p-type impurities in comparatively low concentration and an iH-layer of high impurity concentration containing p-type impurities in comparatively high concentration, the former being adjacent to the n-layer; (3) a light-emitting semiconductor device having both of the above-mentioned features and (4) a method of producing a layer of an n-type gallium nitride compound semiconductor (AlxGa1−xN) having a controlled conductivity from an organometallic compound by vapor phase epitaxy, by feeding a silicon-containing gas and other raw material gases together at a controlled mixing ratio.
摘要翻译:本文公开了(1)使用氮化镓化合物半导体(Al x Ga 1-x N)的发光半导体器件,其中n层n 型氮化镓化合物半导体(Al x Ga 1-x N)是包括低载流子浓度的n层和n < 高载流子浓度的+层,前者与绝缘氮化镓化合物半导体(Al x Ga 1-x N)的i层相邻, ; (2)具有上述类似结构的发光半导体器件,其中i层是双层结构,包括相对较低的含有p型杂质的低杂质浓度的i L层 低浓度和高浓度的含有p型杂质的高杂质浓度的i H +层,前者与n层相邻; (3)具有上述两个特征的发光半导体器件和(4)制造n型氮化镓系化合物半导体层的方法(Al x Ga Ga 1-x N),通过气相外延从有机金属化合物具有受控的导电性,通过以可控混合比将含硅气体和其它原料气体一起供给到一起。
摘要:
A light-emitting diode or laser diode is provided which uses a Group III nitride compound semiconductor satisfying the formula (Al.sub.x Ga.sub.1-x).sub.y In.sub.1-y N, inclusive of 0.ltoreq.x.ltoreq.1, and 0.ltoreq.y.ltoreq.1. A double hetero-junction structure is provided which sandwiches an active layer between layers having wider band gaps than the active layer. The diode has a multi-layer structure which has either a reflecting layer to reflect emission light or a reflection inhibiting layer. The emission light of the diode exits the diode in a direction perpendicular to the double hetero-junction structure. Light emitted in a direction opposite to the light outlet is reflected by the reflecting film toward the direction of the light outlet. Further, the reflection inhibiting film, disposed at or near the light outlet, helps the release of exiting light by minimizing or preventing reflection. As a result, light can be efficiently emitted by the light-generating diode.
摘要翻译:提供一种发光二极管或激光二极管,其使用满足式(Al x Ga 1-x)y In 1-y N的III族氮化物化合物半导体,包括0≤x≤1,0≤y< = 1。 提供了一种双异质结结构,其在活性层之间具有更宽带隙的层之间夹持有源层。 二极管具有多层结构,其具有反射发射光的反射层或反射抑制层。 二极管的发射光在垂直于双异质结结构的方向上离开二极管。 在与光出口相反的方向上发射的光被反射膜反射到光出口的方向。 此外,设置在光出口处或附近的反射抑制膜通过最小化或防止反射来帮助释放出射光。 结果,光可以被发光二极管有效地发射。