Abstract:
An antenna system includes a dielectrically-loaded loop element electromagnetically coupled to a planar element. The antenna system exhibits uniform, broadband radiation and reception patterns.
Abstract:
Compact portable wireless devices and antennas for compact portable wireless devices are provided. The compact portable wireless device may be part of a piece of sports equipment. A compact portable wireless device may include a transceiver module that is used in communicating with equipment such as a handheld electronic device. An antenna for a compact portable wireless device can have a relatively small size while exhibiting high efficiency. A planar ground structure for the antenna may be formed from a circuit board on which integrated circuits have been mounted. A curved inverted-F resonating element may be attached to the ground structure. A battery may be provided to power the compact portable wireless device. The battery may be used as a parasitic antenna element.
Abstract:
An antenna system includes a dielectrically-loaded loop element electromagnetically coupled to a planar element. The antenna system exhibits uniform, broadband radiation and reception patterns.
Abstract:
A method for recovering reforming catalyst comprises obtaining spent reforming catalysts; immersing the spent reforming catalysts with different degrees of aging into a light solution to obtain immersed catalysts and allowing the light solution to enter pores in the spent reforming catalysts to lower a pseudo-skeletal density of each spent reforming catalyst to obtain immersed catalysts; immersing the immersed catalysts into a heavy solution that has a density greater than pseudo-skeletal density of the immersed catalysts and replacing the light solution in the pores in the immersed catalysts by the heavy solution to increase density of the immersed catalysts; and awaiting the immersed catalysts to settle in the heavy solution to obtain settled catalysts, wherein different settling velocities due to aging creates layers of settled catalysts. Therefore, the reforming catalysts with different degrees of aging are easily classified into different layers, which can be reused for cost saving.
Abstract:
Antennas are provided for portable electronic devices. A portable electronic device may have a port that receives a wireless communications adapter. The adapter may be used to provide wireless functionality for the portable electronic device. The adapter may contain a chip antenna that serves as an antenna resonating element. A printed circuit board within the adapter may contain conductor that has been patterned to form a ground plane for the antenna. The portable electronic device may have a conductive structure such as a housing portion. The conductive structure of the portable electronic device serves as a parasitic antenna element that improves antenna efficiency. The portable electronic device may be a handheld electronic device with music player functionality that communicates with a compact portable wireless device in a piece of sports equipment.
Abstract:
An antenna system includes a dielectrically-loaded loop element electromagnetically coupled to a planar element. The antenna system exhibits uniform, broadband radiation and reception patterns.
Abstract:
An antenna system includes a dielectrically-loaded loop element electromagnetically coupled to a planar element. The antenna system exhibits uniform, broadband radiation and reception patterns.
Abstract:
A method for recovering reforming catalyst comprises obtaining spent reforming catalysts; immersing the spent reforming catalysts with different degrees of aging into a light solution to obtain immersed catalysts and allowing the light solution to enter pores in the spent reforming catalysts to lower a pseudo-skeletal density of each spent reforming catalyst to obtain immersed catalysts; immersing the immersed catalysts into a heavy solution that has a density greater than pseudo-skeletal density of the immersed catalysts and replacing the light solution in the pores in the immersed catalysts by the heavy solution to increase density of the immersed catalysts; and awaiting the immersed catalysts to settle in the heavy solution to obtain settled catalysts, wherein different settling velocities due to aging creates layers of settled catalysts. Therefore, the reforming catalysts with different degrees of aging are easily classified into different layers, which can be reused for cost saving.
Abstract:
Compact portable wireless devices and antennas for compact portable wireless devices are provided. The compact portable wireless device may be part of a piece of sports equipment. A compact portable wireless device may include a transceiver module that is used in communicating with equipment such as a handheld electronic device. An antenna for a compact portable wireless device can have a relatively small size while exhibiting high efficiency. A planar ground structure for the antenna may be formed from a circuit board on which integrated circuits have been mounted. A curved inverted-F resonating element may be attached to the ground structure. A battery may be provided to power the compact portable wireless device. The battery may be used as a parasitic antenna element.
Abstract:
Compact portable wireless devices and antennas for compact portable wireless devices are provided. The compact portable wireless device may be part of a piece of sports equipment. A compact portable wireless device may include a transceiver module that is used in communicating with equipment such as a handheld electronic device. An antenna for a compact portable wireless device can have a relatively small size while exhibiting high efficiency. A planar ground structure for the antenna may be formed from a circuit board on which integrated circuits have been mounted. A curved inverted-F resonating element may be attached to the ground structure. A battery may be provided to power the compact portable wireless device. The battery may be used as a parasitic antenna element.