Abstract:
It is presented a method, executed in a root sequence determiner for a base station controlling a first cell, the first cell being associated with at least one root sequence used for cell differentiation on a random access channel. The method comprises the steps of: obtaining information on root sequences of neighboring cells; when a root sequence conflict is found between the first cell and a neighboring cell, here denoted a conflict cell, determining if the conflict cell is of a higher priority than the first cell, the priorities of the first cell and the conflict cell being based on properties of the respective cells; and when the conflict cell is of a higher priority than the first cell, finding a new root sequence for the first cell, avoiding the root sequences of the neighboring cells.
Abstract:
A method for calculating path loss PL at a point P in a coverage area CA of an antenna at a cell site. The method comprises the steps: transmitting a signal from the antenna, the antenna having an effective antenna gain Gant, and measuring a received signal strength indicator RSSI of the transmitted signal by a receiving antenna at the point P. The method further comprises the steps: determining a dominant indirect radiation path between the antenna and the receiving antenna to establish the effective antenna gain Gant from the antenna in a direction of the dominant indirect radiation path, and calculating path loss PL at the point P using the established effective antenna gain Gant and measured received signal strength indicator RSSI. A method for mapping a coverage area, a method for simulating changes in a communication network and a system for cell planning.
Abstract:
A domain name associated with a radio network node's operator or maintenance (OM) node is determined based on at least part of a radio node identifier and a radio network operator identifier. The radio network node sends the domain name to a domain name server. In response to sending the constructed domain name, the radio network node receives from the domain server an IP address for the OM node. The radio network node then initiates a connection with the OM node using the IP address. In one non-limiting example embodiment, the part of the radio node identifier is a radio network node vendor identifier.
Abstract:
The present invention relates to a method and arrangement in a telecommunication system, in particular to methods and arrangements for supporting maintenance activities of units in a telecommunication network.
Abstract:
A relay node (110) for a radio access network (100), arranged to be a relay node between one or more User Equipments (105) in a cell (125) of the radio access network and a base station (115) serving the cell. The relay node (110) is arranged to identify itself as a relay node in the cell (125) in the radio access network (100), and is also arranged to receive a non-support indication indicating that the base station serving the cell (125) is unable to support a relay node. The relay node (110) is arranged to, upon receiving said non-support indication, attempt to establish itself as a relay node in another cell.
Abstract:
The invention relates to a method in a Mobility Management Entity (10,11) for handling a setup of an S1 Application Protocol signalling connection between a first radio base station and the Mobility Management Entity (10,11) in a Long Term Evolution radio communications network. The Mobility Management Entity (10,11) receives an S1 Setup Request message from the first radio base station (12). Furthermore, the Mobility Management Entity (10,11) sends an S1 Setup Response message to the first radio base station (12) enabling the first radio base station to handle the setup of the S1 Application Protocol signalling connection. The S1 Setup Response message comprises an indication of at least one supported tracking area code of a tracking area, which tracking area is served by the Mobility Management Entity (10,11).
Abstract:
Methods and arrangements for provide for an estimation of a cell radius in a mobile telecommunications network. The arrangement comprises a processor which estimates path loss by using an arbitrary path loss estimation method wherein at least a pre-defined cell radius is used as input. The use of the arbitrary path loss estimation method results in a path loss data file comprising values associated with signal strength for pixels within the cell defined by the first cell radius. The processor also estimates a first updated cell radius by excluding pixels having a signal strength below a predetermined threshold from the cell area having the pre-defined cell radius, wherein the first updated cell radius is the cell radius of the remaining cell area when the pixels are excluded.
Abstract:
A cell planning tool capable of determining the correctness of stored parameters regarding a cell site configuration, e.g., regarding the height of an antenna section or the output power. The correctness of the parameters is determined by importing a number of in-situ signal strength-measurements from measuring points located within the coverage area of said cell site and predicting the signal-strength at each of said measuring points, using said stored parameters. Thereafter, the difference between the imported and the corresponding predicted signal-strength is calculated for each measuring point, and a value indicating the correctness of the stored parameters is estimated, based on said calculated signal-strength differences.
Abstract:
The present invention relates to a method in a radio base station (15) and a radio base station for updating information on communication network nodes (A-H) serving a tracking area (28) in which said radio base station (15) is located. The updating information is requested by sending an identity of said tracking area (28) to a communication network server (25), where after said information on said serving communication network nodes (A-H) is received from said communication network server (25).
Abstract:
A global licensing method and a licensing server are described in which licenses for public land mobile network (PLMNs) are allowed to cross PLMN boundaries. The licenses are moved from PLMNs of lower priority to PLMNs of higher priority. In one example, the licenses are moved on a periodic basis. In another example, the licenses are moved on an as needed basis. When demands for licenses are greater than the supply, the PLMNs are prioritized and the licenses are moved from the lower priority PLMNs to higher priority PLMNs. A global license server can be utilized to manage the licenses for the global operator.