Abstract:
A reductant delivery unit (10) is provided for selective catalytic reduction (SCR) after-treatment for vehicles. The unit includes a solenoid fluid injector (10) constructed and arranged to be associated with an exhaust gas flow path (14) upstream of a SCR catalytic converter (17). The fluid injector has a fluid inlet (13) and a fluid outlet (15) with the fluid inlet being constructed and arranged to receive a source of urea solution and the fluid outlet being constructed and arranged to communicate directly with the exhaust flow path so as to control injection of urea solution into the exhaust gas flow path. An interface (24) is constructed and arranged to couple the fluid injector to the gas flow path. The interface defines a thermal barrier constructed and arranged to decoupled a body of the injector from exposure to heat in the exhaust gas flow path.
Abstract:
A reductant delivery unit (16) is provided unit for selective catalytic reduction (SCR) after-treatment for vehicles. The unit includes a solenoid fluid injector (18) associated with an exhaust gas flow path (13). The injector has a fluid inlet (28) and a fluid outlet (30) with the fluid inlet receiving a source of urea solution and the fluid outlet communicating directly with the exhaust flow path so as to control injection of urea solution into the exhaust gas flow path. Supply structure (32) defines the fluid inlet and includes a cup (37) coupled to a body (18) of the injector and a supply tube (29) integral with the cup to define a single member. The supply tube is coupled with the source (27) of urea solution to deliver urea solution to the fluid inlet. The supply tube is heated by a heat source (33) so that an entire volume of the urea solution delivered to the fluid inlet is heated.
Abstract:
A reductant delivery unit (10) is provided for selective catalytic reduction (SCR) after-treatment for vehicles. The unit includes a solenoid fluid injector (10) constructed and arranged to be associated with an exhaust gas flow path (14) upstream of a SCR catalytic converter (17). The fluid injector has a fluid inlet (13) and a fluid outlet (15) with the fluid inlet being constructed and arranged to receive a source of urea solution and the fluid outlet being constructed and arranged to communicate directly with the exhaust flow path so as to control injection of urea solution into the exhaust gas flow path. An interface (24) is constructed and arranged to couple the fluid injector to the gas flow path. The interface defines a thermal barrier constructed and arranged to decoupled a body of the injector from exposure to heat in the exhaust gas flow path.
Abstract:
A dosing valve assembly is disclosed for administering a reducing agent into an exhaust stream from an internal combustion engine upstream of a catalytic converter and diesel particulate filter. The dosing valve assembly includes a control valve coupled to a source of reducing agent, a delivery valve constructed and arranged for coupling to the exhaust stream to enable a quantity of reducing agent to be administered into the exhaust stream, and an elongated conduit connecting the control valve and delivery valve for fluidly communicating reducing agent from the control valve to the fuel delivery valve. The disclosed arrangement enables the control valve to be displaced from the delivery valve and thus away from the high temperature environment proximal to the exhaust stream.
Abstract:
A dosing valve assembly is disclosed for administering a reducing agent into an exhaust stream from an internal combustion engine upstream of a catalytic converter and diesel particulate filter. The dosing valve assembly includes a control valve coupled to a source of reducing agent, a delivery valve constructed and arranged for coupling to the exhaust stream to enable a quantity of reducing agent to be administered into the exhaust stream, and an elongated conduit connecting the control valve and delivery valve for fluidly communicating reducing agent from the control valve to the fuel delivery valve. The disclosed arrangement enables the control valve to be displaced from the delivery valve and thus away from the high temperature environment proximal to the exhaust stream.
Abstract:
A reductant delivery unit (16) is provided unit for selective catalytic reduction (SCR) after-treatment for vehicles. The unit includes a solenoid fluid injector (18) associated with an exhaust gas flow path (13). The injector has a fluid inlet (28) and a fluid outlet (30) with the fluid inlet receiving a source of urea solution and the fluid outlet communicating directly with the exhaust flow path so as to control injection of urea solution into the exhaust gas flow path. Supply structure (32) defines the fluid inlet and includes a cup (37) coupled to a body (18) of the injector and a supply tube (29) integral with the cup to define a single member. The supply tube is coupled with the source (27) of urea solution to deliver urea solution to the fluid inlet. The supply tube is heated by a heat source (33) so that an entire volume of the urea solution delivered to the fluid inlet is heated.
Abstract:
A dosing valve assembly is disclosed for administering a reducing agent into an exhaust stream within an exhaust manifold of an internal combustion engine. The dosing valve assembly comprises a control valve coupled to a source of the reducing agent, a reducing agent delivery valve constructed and arranged for coupling to the exhaust manifold to enable a specified quantity of reducing agent to be administered into the exhaust stream, and an elongated conduit disposed between the control valve and reducing agent delivery valve for fluidly communicating reducing agent from the control valve to the reducing agent delivery valve. The disclosed arrangement enables the reducing agent delivery valve to be coupled to the exhaust manifold and the control valve to be displaced from the reducing agent delivery valve and away from the high temperature environment associated with the exhaust manifold.