Abstract:
Changes in electrical stimulation therapy delivered via a medical device are coordinated with Functional Magnetic Resonance Imaging (fMRI) scans. In one example, a medical device delivers electrical stimulation therapy to a patient in an MRI unit, where the medical device is configured to cycle electrical stimulation therapy between a plurality of stimulation states. An indication that the medical device will cycle the electrical stimulation therapy or has cycled the electrical stimulation therapy while the patient is in the MRI unit or being imaged by the MRI unit is generated, and an MRI scan of the patient via an MRI workstation is initiated based on the indication. In another example, a medical device detects activation of an MRI scan and automatically switches stimulation states based upon the detection of the MRI scan, such that the scan is associated with a particular stimulation state.
Abstract:
Various programming techniques are described for medical devices that deliver electrical stimulation therapy that may include mapping between discrete electrical stimulation parameters and a graphical view of the electrical stimulation representing a stimulation zone generated by the parameters. In one example, a method includes receiving, via a programmer for an electrical stimulator, user input that graphically manipulates at least one of size and a shape of a graphical representation of at least one electrical stimulation zone displayed on the programmer, and defining a program to control delivery of electrical stimulation therapy based on the user input.
Abstract:
In general, the disclosure is related to characterization of implanted electrical stimulation electrode arrays using post-implant imaging. The electrode arrays may be carried by implanted leads. Characterization of implanted electrode arrays may include identification of the type or types of leads implanted within a patient and/or determination of positions of the implanted leads or electrodes carried by the leads relative to one another or relative to anatomical structures within the patient. In addition, the disclosure relates to techniques for specifying or modifying patient therapy parameters based on the characterization of the implanted electrode arrays.
Abstract:
System, telemetry head and method for programming an implantable medical device adapted to provide a therapeutic output to a patient, the implantable medical device being programmable through a telemetry interface. A telemetry head is adapted for transcutaneous communication with the implantable medical device through the telemetry interface when the telemetry head is positioned with respect to the implantable medical device. A computing device has computing processing power and a user interface linked with the telemetry head. The computing device processes the computing instructions associated with the implantable medical device. The computing device supplies the user interface based, at least in part, on the computing instructions associated with the implantable medical device. The telemetry head receives programming instructions from the computing device and provides the programming instructions to the implantable medical device using the transcutaneous telemetry interface.
Abstract:
Techniques are described, for medical devices that deliver electrical stimulation therapy, for controlling a transition from an initial stimulation location or initial stimulation shape to a user-specified target stimulation location or target stimulation shape in order to limit the rate of change of stimulation. One example method includes receiving, via a programmer for an electrical stimulator, user input indicating a target stimulation zone, and controlling the electrical stimulator to transition electrical stimulation from an initial stimulation zone to the target stimulation zone via one or more intermediate stimulation zones.
Abstract:
Example techniques involve generating test stimulation programs based upon specific patient feedback to guide the programming process for stimulation therapy. The patient describes positive effects and adverse effects of the test stimulation by listing and/or rating specific types of effects, both positive and adverse, and the location of each effect. In this manner, a programming device, i.e. a programmer, uses the feedback to generate subsequent test stimulation programs. Initially, programs with unipolar electrode configurations are tested, but the programmer may generate bipolar electrode configurations to test if the patient rates the unipolar electrode combinations poorly. After the stimulation programs are tested and rated, the programmer sorts the tested programs based upon the feedback and presents the tested programs to the user. The user selects the best tested program to use for chronic stimulation therapy. Additionally, the patient may utilize the guided programming technique for continued therapy optimization.
Abstract:
The disclosure is directed to programming implantable stimulators to deliver stimulation energy via one or more implantable leads having complex electrode array geometries. A programmer is configured to generate an electrical field model from selected stimulation parameters and patient anatomy data. The electrical field model indicates how the electrical field propagation would occur in the patient during therapy. In addition, the programmer may be configured to generate an activation field model from the electrical field model and a neuron model. The activation field indicates which neurons within the electrical field will be activated during the therapy. Either of these field models may be presented to the user via a user interface that also displays a representation of the lead implanted within the patient. The user interface may allow the user to adjust the stimulation therapy by manipulating displayed field or activation model representations.
Abstract:
A programming system allows a user to program therapy parameter values for therapy delivered by a medical device by specifying a desired therapeutic outcome. In an example, the programming system presents a model of a brain network associated with a patient condition to the user. The model may be a graphical representation of a network of anatomical structures of the brain associated with the patient condition and may indicate the functional relationship between the anatomical structures. Using the model, the user may define a desired therapeutic outcome associated with the condition, and adjust excitatory and/or inhibitory effects of the stimulation on the anatomical structures. The system may determine therapy parameter values for therapy delivered to the patient based on the user input.
Abstract:
The disclosure is directed to programming implantable stimulators to deliver stimulation energy via one or more implantable leads having complex electrode array geometries. The disclosure also contemplates guided programming to select electrode combinations and parameter values to support efficacy. The techniques may be applied to a programming interface associated with a clinician programmer, a patient programmer, or both. A user interface permits a user to view electrodes from different perspectives relative to the lead. For example, the user interface provides a side view of a lead and a cross-sectional view of the lead. The user interface may include an axial control medium to select and/or view electrodes at different axial positions along the length of a lead, and a rotational control medium to select and/or view electrodes at different angular positions around a circumference of the lead.
Abstract:
In one example, a device includes a telemetry module configured to retrieve graphics processing data from a device that is not configured to perform a rendering process using the graphics processing data and that is associated with delivering therapy to a therapy target of a patient, and a control unit configured to apply the graphics processing data while performing the rendering process to generate an image of an anatomical feature of the patient, wherein the anatomical feature comprises the therapy target for an implantable medical device, and to cause a display unit of a user interface to display the image, wherein the image of the anatomical feature is specific to the patient. The graphics processing data may include a list of vertices or a transform to be applied to a non-patient-specific anatomical atlas. The data may also include a location of a therapy element of the implantable medical device.