摘要:
The invention provides a system and method for automated software testing based on Machine Learning (ML). The system automatically picks up results of the software test automation reports from software test automation framework. The report parser parses the failures from the report. A ML engine compares them with the failures that are known or present in the NoSQL database. After the creation of bug ticket in the defect-tracking tool, an automated notification system notifies the stakeholders via email or instant messaging about the status of the respective ticket. A feedback to the system by software test engineer helps to make the system learn or adjust the decision making to be more precise.
摘要:
Example implementations are directed to systems and methods based on physical broadcast channel (PBCH) muting are utilized to avoid frequent cell selection/reselection and handover in a LTE-advanced heterogeneous network. In the example implementations, a pico eNB that is fully covered by a macro eNB or other pico eNBs transmits blank PBCH such that it is inaccessible to the UEs who perform cell selection/reselection. Furthermore, a macro eNB may handover a UE to the inaccessible pico eNB by signalling the necessary information to the UE to detect the inaccessible pico eNB. Frequent cell selection/reselection and handover may therefore be avoided in a dense deployment situation.
摘要:
Embodiments described herein are directed to a power control scheme for Long Term Evolution Advanced (LTE-A) heterogeneous networks to reduce the interference from macro base stations (BS) to pico user equipment (UE). The embodiments described herein may be used to develop LTE-A heterogeneous networks to balance the achievable throughput between macro and pico UEs and may thereby improve the overall system performance.
摘要:
A technique is used to realize a generalized decision feedback equalizer (GDFE) Precoder for multi-user multiple-input multiple-output (MU-MIMO) systems, which significantly reduces the computational cost while resulting in no capacity loss. The technique is suitable for improving the performance of various MU-MIMO wireless systems including future 4G cellular networks. In one embodiment, a method for configuring a GDFE precoder in a base station of a MU-MIMO wireless system having k user terminals, each user terminal having associated therewith a feedforward filter. The method comprises computing a filter matrix C using one of a plurality of alternative formulas of the invention; and, based on the computation of the filter matrix C, computing a transmit filter matrix B for a transmit filter used to process a symbol vector obtained after a decision feedback equalizing stage of the GDFE precoder, a feedforward filter matrix F, and an interference pre-cancellation matrix G.
摘要:
Systems and methods are directed to deciding the number of subframes in a frame to use for uplink transmission, with the remaining frames used for downlink transmission for a Base Station (BS) in a Time Division Duplexing Long Term Evolution (TDD-LTE). Systems and methods are based on the number of User Equipment (UEs) that the BS has to serve in the uplink and in the downlink, as well as the uplink (UL) and downlink (DL) traffic loads per user. Systems and methods are directed to allowing a TDD LTE BS to partition the subframes in a frame for its UL and DL traffic.
摘要:
A technique is used to realize a generalized decision feedback equalizer (GDFE) Precoder for multi-user multiple-input multiple-output (MU-MIMO) systems, which significantly reduces the computational cost while resulting in no capacity loss. The technique is suitable for improving the performance of various MU-MIMO wireless systems including future 4G cellular networks. In one embodiment, a method for configuring a GDFE precoder in a base station of a MU-MIMO wireless system having k user terminals, each user terminal having associated therewith a feedforward filter. The method comprises computing a filter matrix C using one of a plurality of alternative formulas of the invention; and, based on the computation of the filter matrix C, computing a transmit filter matrix B for a transmit filter used to process a symbol vector obtained after a decision feedback equalizing stage of the GDFE precoder, a feedforward filter matrix F, and an interference pre-cancellation matrix G.
摘要:
A method for processing user symbols with Tomlinson Harashima precoder (THP) in a base station, of a wireless system having K user terminals (UEs) which communicate with the base station via an uplink channel and corresponding downlink (DL) channel, comprises estimating a DL channel matrix Hk; determining receiver processing matrix Vk; computing an effective matrix DL channel Heff; performing QR decomposition of Heff; computing THP matrices; calculating scalar weights for the UEs; processing user symbols by the THP having the THP matrices to produce an output of filtered vector symbols for the UEs; directing output of the THP to the channel represented by the DL channel matrix through which communications occur in the wireless system with the UEs; performing additional receiver processing on the transmitted signals at the UEs based on Vk for each of the K UEs; and using the scalar weights on the transmitted signals at the UEs.
摘要:
A system comprises a candidate channel assessment module for obtaining at least one AC-specific channel suitability metric for each of two different channels, and for using the AC-specific channel suitability metrics to determine a channel suitability index of each of the two different channels; a channel selection module for using the channel suitability index to select one of the two different channels as a new channel; and a channel setting module for configuring a wireless transceiver to use the new channel.
摘要:
To realize a GDFE precoder for multi-user MIMO systems, which significantly reduces the computational cost while resulting in no capacity loss, one method comprises obtaining an effective downlink (DL) channel matrix H for the DL channel after receiver processing at the user terminals; computing an uplink (UL) covariance matrix D by assuming there are as many user terminals as a number of rows in the effective DL channel matrix H; computing a filter matrix C based on the UL covariance matrix D; computing a feedforward filter matrix F based on the filter matrix C; computing an interference pre-cancellation matrix G, based on the feedforward filter matrix F and the filter matrix C, used in a transmitter at an interference pre-cancellation stage of the GDFE precoder; and processing user symbols by a decision feedback equalizing stage of the GDFE precoder to produce filtered vector symbols.
摘要:
A technique is used to realize a generalized decision feedback equalizer (GDFE) Precoder for multi-user multiple-input multiple-output (MU-MIMO) systems, which significantly reduces the computational cost while resulting in no capacity loss. The technique is suitable for improving the performance of various MU-MIMO wireless systems including future 4G cellular networks. In one embodiment, a method for configuring a GDFE precoder in a base station of a MU-MIMO wireless system having k user terminals, each user terminal having associated therewith a feedforward filter. The method comprises computing a filter matrix C using one of a plurality of alternative formulas of the invention; and, based on the computation of the filter matrix C, computing a transmit filter matrix B for a transmit filter used to process a symbol vector obtained after a decision feedback equalizing stage of the GDFE precoder, a feedforward filter matrix F, and an interference pre-cancellation matrix G.