Abstract:
An integrated circuit device is provided which includes a through-silicon via (TSV) structure and one or more decoupling capacitors, along with a method of manufacturing the same. The integrated circuit device may include a semiconductor structure including a semiconductor substrate, a TSV structure passing through the semiconductor substrate, and a decoupling capacitor formed in the semiconductor substrate and connected to the TSV structure. The TSV structure and the one or more decoupling capacitors may be substantially simultaneously formed. A plurality of decoupling capacitors may be disposed within a keep out zone (KOZ) of the TSV structure. The plurality of decoupling capacitors may have the same or different widths and/or depths. An isopotential conductive layer may be formed to reduce or eliminate a potential difference between different parts of the TSV structure.
Abstract:
An integrated circuit device is provided. The integrated circuit device includes: a capacitor including an electrode formed in a first area on a substrate; a through-silicon-via (TSV) landing pad formed in a second area on the substrate, the TSV landing pad including the same material as the electrode; a multi-layered interconnection structure formed on the capacitor and the TSV landing pad; and a TSV structure passing through the substrate, the TSV structure being connected to the multi-layered interconnection structure through the TSV landing pad.
Abstract:
Provided is an integrated circuit device including a through-silicon-via (TSV) structure and a method of manufacturing the integrated circuit device. The integrated circuit device includes a semiconductor structure including a substrate and an interlayer insulating film, a TSV structure passing through the substrate and the interlayer insulating film, a via insulating film substantially surrounding the TSV structure, and an insulating spacer disposed between the interlayer insulating film and the via insulating film.
Abstract:
A semiconductor device includes a circuit pattern over a first surface of a substrate, an insulating interlayer covering the circuit pattern, a TSV structure filling a via hole through the insulating interlayer and the substrate, an insulation layer structure on an inner wall of the via hole and on a top surface of the insulating interlayer, a buffer layer on the TSV structure and the insulation layer structure, a conductive structure through the insulation layer structure and a portion of the insulating interlayer to be electrically connected to the circuit pattern, a contact pad onto a bottom of the TSV structure, and a protective layer structure on a second surface the substrate to surround the contact pad.
Abstract:
An integrated circuit device is provided. The integrated circuit device includes: a capacitor including an electrode formed in a first area on a substrate; a through-silicon-via (TSV) landing pad formed in a second area on the substrate, the TSV landing pad including the same material as the electrode; a multi-layered interconnection structure formed on the capacitor and the TSV landing pad; and a TSV structure passing through the substrate, the TSV structure being connected to the multi-layered interconnection structure through the TSV landing pad.
Abstract:
Integrated circuit (IC) devices are provided including: a first multi-layer wiring structure including a plurality of first wiring layers in a first region of a substrate at different levels and spaced apart from one another, and a plurality of first contact plugs between the plurality of first wiring layers and connected to the plurality of first wiring layers; a through-silicon via (TSV) landing pad including a first pad layer in a second region of the substrate at a same level as that of at least one first wiring layer from among the plurality of first wiring layers, and a second pad layer at a same level as that of at least one first contact plug from among the plurality of first contact plugs and contacts the first pad layer; a second multi-layer wiring structure on the TSV landing pad; and a TSV structure that passes through the substrate and is connected to the second multi-layer wiring structure through the TSV landing pad.
Abstract:
A stacked semiconductor device and a method for fabricating the stacked semiconductor device are disclosed. The stacked semiconductor device includes a first insulating interlayer having an opening that partially exposes a substrate, wherein the substrate includes single crystalline silicon, and a first seed pattern that fills the opening, wherein the first seed pattern has an upper portion disposed over the opening, and the upper portion is tapered away from the substrate. The stacked semiconductor device further includes a second insulating interlayer formed on the first insulating interlayer, wherein a trench that exposes the upper portion of the first seed pattern penetrates the second insulating interlayer, and a first single crystalline silicon structure that fills the trench.
Abstract:
In methods of manufacturing a semiconductor device, a substrate having a first surface and a second surface opposite to the first surface is prepared. A sacrificial layer pattern is formed in a region of the substrate that a through electrode will be formed. The sacrificial layer pattern extends from the first surface of the substrate in a thickness direction of the substrate. An upper wiring layer is formed on the first surface of the substrate. The upper wiring layer includes a wiring on the sacrificial layer pattern. The second surface of the substrate is partially removed to expose the sacrificial layer pattern. The sacrificial layer pattern is removed from the second surface of the substrate to form an opening that exposes the wiring. A through electrode is formed in the opening to be electrically connected to the wiring.
Abstract:
For forming a semiconductor device, a via structure is formed through at least one dielectric layer and at least a portion of a substrate. In addition, a protective buffer layer is formed onto the via structure. Furthermore, a conductive structure for an integrated circuit is formed over the substrate after forming the via structure and the protective buffer layer, with the conductive structure not being formed over the via structure. Thus, deterioration of the conductive and via structures is minimized.
Abstract:
The methods include forming a semiconductor substrate pattern by etching a semiconductor substrate. The semiconductor pattern has a first via hole that exposes side walls of the semiconductor substrate pattern, and the side walls of the semiconductor substrate pattern exposed by the first via hole have an impurity layer pattern. The methods further include treating upper surfaces of the semiconductor substrate pattern, the treated upper surfaces of the semiconductor substrate pattern being hydrophobic; removing the impurity layer pattern from the side walls of the semiconductor substrate pattern exposed by the first via hole; forming a first insulating layer pattern on the side walls of the semiconductor substrate pattern exposed by the first via hole; and filling a first conductive layer pattern into the first via hole and over the first insulating layer pattern.