Abstract:
A semiconductor chip structure may include a semiconductor chip, a first insulation layer and a redistribution layer. The first insulation layer may be formed on the semiconductor chip. The first insulation layer may have at least one first groove formed at an upper surface portion of the first insulation layer. Further, the at least one first groove may have an upper width and a lower width greater than the upper width. The redistribution layer may be partially formed on the first insulation layer. The redistribution layer may have at least one first protrusion formed on a lower surface portion of the redistribution layer. The first protrusion may have an upper width and a lower width less than the upper width. The first protrusion may be inserted into the at least one first groove.
Abstract:
An interconnection structure includes an integrated circuit (IC) chip having internal circuitry and a terminal to electrically connect the internal circuitry to an external circuit, a passivation layer disposed on a top surface of the IC chip, the passivation layer configured to protect the internal circuitry and to expose the terminal, an input/output (I/O) pad, where the I/O pad includes a first portion in contact with the terminal and a second portion that extends over the passivation layer, and an electroless plating layer disposed on the I/O pad.
Abstract translation:互连结构包括具有内部电路的集成电路(IC)芯片和用于将内部电路电连接到外部电路的端子,设置在IC芯片的顶表面上的钝化层,钝化层被配置为保护内部电路 以及使所述终端暴露于所述I / O焊盘包括与所述端子接触的第一部分和在所述钝化层上延伸的第二部分的输入/输出(I / O)焊盘,以及设置在所述钝化层上的无电镀层 I / O板。
Abstract:
A wafer level chip scale package may have a gap provided between a solder bump and a bump land. The gap may be filled with a gas. A method of manufacturing a wafer level chip scale package may involve forming a redistribution line having a first opening, forming a seed metal layer having a second opening including an undercut portion, and forming the gap using the first and the second openings.
Abstract:
In the manufacture of a semiconductor device, a photosensitive layer is deposited to cover an exposed portion of an electrode with the photosensitive layer. The photosensitive layer is then subjected to a photolithography process to partially remove the photosensitive layer covering the electrode. The electrode may be a ball electrode or a bump electrode, and the semiconductor device may be contained in a wafer level package (WLP) or flip-chip package.
Abstract:
A semiconductor chip structure may include a semiconductor chip, a first insulation layer and a redistribution layer. The first insulation layer may be formed on the semiconductor chip. The first insulation layer may have at least one first groove formed at an upper surface portion of the first insulation layer. Further, the at least one first groove may have an upper width and a lower width greater than the upper width. The redistribution layer may be partially formed on the first insulation layer. The redistribution layer may have at least one first protrusion formed on a lower surface portion of the redistribution layer. The first protrusion may have an upper width and a lower width less than the upper width. The first protrusion may be inserted into the at least one first groove.
Abstract:
An interconnection structure includes an integrated circuit (IC) chip having internal circuitry and a terminal to electrically connect the internal circuitry to an external circuit, a passivation layer disposed on a top surface of the IC chip, the passivation layer configured to protect the internal circuitry and to expose the terminal, an input/output (I/O) pad, where the I/O pad includes a first portion in contact with the terminal and a second portion that extends over the passivation layer, and an electroless plating layer disposed on the I/O pad.
Abstract translation:互连结构包括具有内部电路的集成电路(IC)芯片和用于将内部电路电连接到外部电路的端子,设置在IC芯片的顶表面上的钝化层,该钝化层被配置为保护内部电路 以及使所述终端暴露于所述I / O焊盘包括与所述端子接触的第一部分和在所述钝化层上延伸的第二部分的输入/输出(I / O)焊盘,以及设置在所述钝化层上的无电镀层 I / O板。
Abstract:
A process for producing semiconductor devices using ultraviolet sensitive tape including the steps of forming a plurality of chips on a first surface of a semiconductor wafer, adhering an ultraviolet sensitive tape to the first surface of the semiconductor wafer, back lapping a second surface of the wafer, opposite to the first surface, and irradiating the ultraviolet sensitive tape with ultraviolet rays to release the ultraviolet sensitive tape from the wafer.
Abstract:
A method for manufacturing semiconductor chip package comprising steps of: (a) preparing a lead frame which comprises a pair of opposing side rails which have a plurality of through holes on their upper surface; a die pad onto which a chip will be mounted; a pair of rows of leads, each row being disposed at both sides of the die pad at a distance; and tiebars for mechanically and integrally connecting said die pad to said side rails; (b) filling a resin compound between leads and curing the resin compound to make dambars; (c) attaching said chip to an upper surface of said die pad, and electrically connecting said chip to leads; (d) encapsulating said chip, said die pad, said dambars, a part of said leads and a part of said tiebars to give a package body which is still attached to said lead frame; and (e) cutting said tiebars from lead frame to separate an individual package; and (f) forming leads extending from the package to have an appropriate bend shape is provided.
Abstract:
A method for treating a polyimide surface which includes the steps of amine-treating the polyimide surface and drying the thusly amine-treated polyimide surface. The amine-treating step is preferably carried out by immersing the polyimide in an amine solution which includes an amine and a solvent. The amine is preferably an aliphatic, aromatic, or siloxane amine. The drying step is preferably carried out a temperature of about 50.degree.-200.degree. C. The polyimide is preferably a polyimide having at least one imide functional group in its main chain, and is most preferably a polycondensate of at least one dianhydride and at least one diamine.
Abstract:
A method of fabricating wafer level chip scale packages may involve forming a hole to penetrate through a chip pad of an IC chip. A base metal layer may be formed on a first face of a wafer to cover inner surfaces of the hole. An electrode metal layer may fill the hole and rise over the chip pad. A second face of the wafer may be grinded such that the electrode metal layer in the hole may be exposed through the second face. By electroplating, a plated bump may be formed on the electrode metal layer exposed through the second face. The base metal layer may be selectively removed to isolate adjacent electrode metal layers. The wafer may be sawed along scribe lanes to separate individual packages from the wafer.