Abstract:
A method of manufacturing an optical sensor includes providing a semiconductor wafer including a plurality of pixel areas, providing a light transmissive substrate including a light transmissive wafer with a plurality of light transmissive members attached thereto, the plurality of light transmissive members being arranged on a first main surface of the light transmissive wafer and each of plurality of light transmissive members emitting α rays, an amount of the α rays being smaller than or equal to 0.05 c/cm2·h, fixing the light transmissive substrate onto the semiconductor wafer together by a fixing member, and dividing the semiconductor wafer and the light transmissive substrate that are fixed together into individual pieces.
Abstract translation:一种制造光学传感器的方法,包括提供包括多个像素区域的半导体晶片,提供包括具有附接到其上的多个透光构件的透光晶片的透光基板,所述多个透光构件布置在第一 透光晶片的主表面和发射α射线的多个透光部件中的每一个,α射线的量小于或等于0.05c / cm 2·h,将透光基板固定在半导体晶片上一起由 固定部件,并且将固定在一起的半导体晶片和透光性基板分割成单独的片。
Abstract:
A method of manufacturing an optical sensor includes the steps of providing a semiconductor wafer having a plurality of pixel areas; forming a grid-like rib enclosing each pixel area on the semiconductor wafer, the grid-like rib having a predetermined width and being formed from a fixing member; providing a light-transmissive substrate having a gap portion on a main surface thereof, the gap portion having at least one of a groove having a width smaller than the grid-like rib and a plurality of through-holes; fixing the semiconductor wafer and the light-transmissive substrate such that the grid-like rib and the gap portion face each other; and cutting the fixed semiconductor wafer and light-transmissive substrate into pieces such that each piece includes one pixel area.
Abstract:
A method of manufacturing an optical sensor includes providing a semiconductor wafer including a plurality of pixel areas, providing a light transmissive substrate including a light transmissive wafer with a plurality of light transmissive members attached thereto, the plurality of light transmissive members being arranged on a first main surface of the light transmissive wafer and each of plurality of light transmissive members emitting α rays, an amount of the α rays being smaller than or equal to 0.05 c/cm2·h, fixing the light transmissive substrate onto the semiconductor wafer together by a fixing member, and dividing the semiconductor wafer and the light transmissive substrate that are fixed together into individual pieces.
Abstract translation:一种制造光学传感器的方法,包括提供包括多个像素区域的半导体晶片,提供包括具有附接到其上的多个透光构件的透光晶片的透光基板,所述多个透光构件布置在第一 透光晶片的主表面和发射α射线的多个透光部件中的每一个,α射线的量小于或等于0.05c / cm 2·h,将透光基板固定在半导体晶片上一起由 固定部件,并且将固定在一起的半导体晶片和透光性基板分割成单独的片。
Abstract:
To provide a package for an optical semiconductor having a light-emitting device and a light-receiving device in one package, in which a groove is provided between the light-emitting device and the light-receiving device to thereby avoid rays of light from the light-emitting device to directly enter the light-receiving device.
Abstract:
An image pickup module includes a cover member, an image pickup device chip including photodiodes, a fixing member which is arranged around the image pickup device chip and which connects the cover member and the image pickup device chip together, a rewiring substrate arranged on the side opposite to the cover member of the image pickup device chip, connection members for connecting the image pickup device chip with the rewiring substrate, and a space surrounded by the cover member, the image pickup device chip, and the fixing member. The image pickup device chip includes a semiconductor substrate. The semiconductor substrate includes through-hole electrodes penetrating the substrate. When an area corresponding to the fixing member in the orthogonal projection of the image pickup module with respect to the cover module is defined as a fixed area, the through-hole electrodes and the connection members are arranged in the fixed area.
Abstract:
A soft capsule composed of a plurality of cells coalesced to each other and filling substances encapsulated in the individual cells, the wall of at least one of the cells being formed of a material different from a material forming the wall of at least one of the other cells, and said capsule being seamless. The soft capsule can be produced by(a) preparing a plurality of composite jet streams each consisting of a stream of a film-forming liquid substance for forming a cell wall and within said stream of a film-forming liquid substance a single stream, or a plurality of independent streams, of a filling substance having flowability, the film-forming liquid substance in at least one of the composite jet streams being different from the film-forming liquid substance in at least one of the other composite jet streams,(b) advancing the plurality of composite jet streams in closely spaced relationship into and through a stream of a liquid medium substantially incapable of dissolving the film-forming liquid substance in the flowing direction of the liquid medium stream,(c) coalescing the adjacent composite jet streams to each other to form a single composite jet stream in the liquid medium stream,(d) cutting the single composite jet stream to a predetermined length successively from its leading end in the liquid medium stream, and(e) solidifying the cell walls of the resulting soft capsule.
Abstract:
A method of manufacturing an optical sensor includes the steps of providing a semiconductor wafer having a plurality of pixel areas; forming a grid-like rib enclosing each pixel area on the semiconductor wafer, the grid-like rib having a predetermined width and being formed from a fixing member; providing a light-transmissive substrate having a gap portion on a main surface thereof, the gap portion having at least one of a groove having a width smaller than the grid-like rib and a plurality of through-holes; fixing the semiconductor wafer and the light-transmissive substrate such that the grid-like rib and the gap portion face each other; and cutting the fixed semiconductor wafer and light-transmissive substrate into pieces such that each piece includes one pixel area.
Abstract:
An image pickup module includes a cover member, an image pickup device chip including photodiodes, a fixing member which is arranged around the image pickup device chip and which connects the cover member and the image pickup device chip together, a rewiring substrate arranged on the side opposite to the cover member of the image pickup device chip, connection members for connecting the image pickup device chip with the rewiring substrate, and a space surrounded by the cover member, the image pickup device chip, and the fixing member. The image pickup device chip includes a semiconductor substrate. The semiconductor substrate includes through-hole electrodes penetrating the substrate. When an area corresponding to the fixing member in the orthogonal projection of the image pickup module with respect to the cover module is defined as a fixed area, the through-hole electrodes and the connection members are arranged in the fixed area.
Abstract:
An IC package has a substrate having recesses formed on the side wall thereof, an insulating film for covering an opening of each recess on the side of a principal surface of the substrate, and an IC chip mounted on a mount surface side of the film on the substrate, wherein a conductive portion formed on each recess is used as an external connection terminal for the IC chip. A method of assembling an IC package has the steps of forming a substrate having a plurality of through holes each having an insulating film covering one of the openings of each through hole, mounting one or more IC chips on a principal surface of the substrate on the insulating film side, and electrically connecting the IC chip and the through holes, sealing the substrate with the IC chip mounted thereon with insulating resin, and cut the substrate with the IC chip mounted thereon to expose the side wall of each through hole.