Abstract:
An automatic clutch control device comprises a clutch interposed between a prime move and an input shaft of a transmission; a target clutch torque calculation section; a gear change control section; an accelerator pressing-down speed detecting section; a judging section for judging whether or not the accelerator pressing-down speed exceeds at least one predetermined pressing-down speed threshold value; a prime mover rotational speed increasing control section operated when the accelerator pressing-down speed exceeds the threshold value, for disconnecting the input shaft and the prime mover and then for controlling the prime mover rotational speed to increase and come to be equal to the input shaft rotational speed which has been increased by a lower speed gear stage having been established; and a target clutch torque change calculation section for calculating a change amount that changes the target clutch torque in dependence on the magnitude of the accelerator pressing-down speed.
Abstract:
An apparatus comprises a changeover mechanism which is able to change a connection state of an electric motor output shaft to any one of states including, “an IN-Connection State” in which a power transmission path is provided between a transmission input shaft and the electric motor output shaft, “an OUT-Connection State” in which a power transmission path is provided between the transmission output shaft and the electric motor output shaft, and “a neutral connection state” in which no transmission path therebetween is provided. The changeover is carried out based on a combination (area) of a vehicle speed V and a required driving torque T. As for the changeover, an IN-connection area, in which an electric-motor-driving-wheels-maximum-torque is larger than in an OUT-Connection State and in a neutral connection area, is enlarged.
Abstract:
A transmission includes a controller that has a rapid-deceleration judge and a rapid-deceleration processor. The rapid-deceleration judge judges whether a vehicle is decelerating rapidly or not. The rapid-deceleration processor includes a torque-fluctuation inhibitor, and an after-rapid-deceleration change-speed stage anticipator. The torque-fluctuation inhibitor shuts off power transmission from a power source, or holds power transmission by way of a current change-speed stage or lower, when the vehicle is decelerating rapidly. The after-rapid-deceleration change-speed stage anticipator anticipates a subsequent change-speed stage being adapted for restarting or reaccelerating the vehicle that has come out of rapid deceleration.
Abstract:
When a gear position at a higher speed range than a “specific gear position at a lower speed range” (e.g., first speed) is determined (when the torsional vibration is difficult to occur), a clutch torque is controlled such that a clutch is in a totally engagement state (a revolution speed Ne of an output shaft of an engine=revolution speed Ni of an input shaft of a transmission). On the other hand, when the “specific gear position at the lower speed range” (e.g., first speed) is determined (when the torsional vibration is easy to occur), the clutch torque is controlled such that the clutch is in the semi-engagement state (Ne−Ni=predetermined positive value A). In the semi-engagement state, a “damping action by a slip on the clutch” is acted on the torsional vibration, whereby the amplitude of the torsional vibration can be reduced.
Abstract:
An apparatus comprises a changeover mechanism which is able to change a connection state to any one of three states, i.e., “an IN-Connection State” in which a power transmission path is provided between a transmission input shaft and the electric motor output shaft, “an OUT-Connection State” in which a power transmission path is provided between a transmission output shaft and the electric motor output shaft, and “a neutral connection state” in which no transmission path therebetween is provided. At a timing (time t1) at which a both-neutral-state is required during the vehicle is running, both “an operation for a changeover of the state-of-connecting of the clutch mechanism (C/T 30) from a connection-state to a shut-off-state” and “an operation for a changeover of said connection state of the changeover mechanism 50 from either one of the IN-Connection State and the OUT-Connection State to the non-connection state” are simultaneously started.
Abstract translation:一种装置包括能够将连接状态改变为三个状态中的任何一个的转换机构,即,在传动输入轴和电动机输出轴之间设置动力传递路径的“连接状态” 在变速器输出轴和电动机输出轴之间设置有动力传递路径的“OUT连接状态”和其间没有传动路径的“中立连接状态”。 在车辆行驶期间需要双中立状态的时刻(时刻t1),“将离合器机构(C / T 30)的连接状态的切换从连接 “状态到关闭状态”,并且“将切换机构50的所述连接状态从IN连接状态和OUT连接状态中的任一个切换到非连接状态的操作”同时 开始了
Abstract:
At least one shift gate includes a stabilizing range for stabilizing an engagement between the engaging portion and the at least one shift gate. The system stops movement of the movable member by driving the actuator and determines a portion at the movable member as a shift gate reference position at a time when the movement of the movable member stops. The system moves the movable member by driving the actuator, stabilizes the engaging portion in the stabilizing range, and determines the stabilizing position of the engaging portion as a position of the at least one shift gate.
Abstract:
An automated manual transmission control apparatus includes: a clutch; a transmission including: an input shaft; an output shaft; at least one forward shift stage gear; at least one synchromesh mechanism; and at least one reserve shift stage gear; an input shaft rotational speed sensor; a controlling means; a temporarily engaging means for performing a temporal engagement operation by which, the synchromesh mechanism is temporarily frictionally engaged with the at least one forward shift stage gear; and a reverse driving determining means for preventing a shift operation into the reverse shift stage when a vehicle speed obtained from the results of the input shaft rotational speed sensor exceeds a specified value at a time of the temporal engagement operation.
Abstract:
A select control system for a vehicle transmission includes a gate mechanism having plural gates respectively selected upon a shift operation and having at least an actual gate, a temporary target gate, and a target gate, a select position determining mechanism adjusted to move the actual gate to the target gate along a select direction of the gate mechanism, and a select control element adjusted to control the select position determining mechanism. The select control element performs a temporary target gate remaining process in which the actual gate temporarily remains at the temporary target gate and moves to the target gate.
Abstract:
A transmission system, including a synchromesh-type transmission, includes an input shaft, a counter gear, an output shaft, an idle gear, a sleeve, a synchromesh mechanism for selecting a predetermined speed-change in response to a synchronizing operation of the sleeve and the idle gear, and a shift actuator for activating the sleeve depending on a shift operation. The transmission system further includes a detecting device for detecting a rotational number changing ratio of the input shaft when a synchronizing operation is performed in accordance with an engaging operation of the sleeve and the idle gear, a controlling device for controlling an operation of the shift actuator depending on an indication from the detecting device, and a converting device for converting an output indicating value to the shift actuator based on characteristics of the shift actuator.
Abstract:
A power transmission control device, which is applied to a hybrid-vehicle provided with an internal combustion engine (E/G) and a motor (M/G) as power sources, includes a manual transmission and a friction clutch. When the shift position is in “neutral”, the friction clutch is in an engaged state, an accelerator opening is “0”, and a battery remaining amount SOC is less than a threshold TH, a charge condition is satisfied. When the charge condition is satisfied, charge of a battery by using an E/G torque is carried out. Specifically, the M/G is driven, by using the E/G torque, as an electrical power generator, and electric energy acquired by electric power generation by the M/G is used to charge the battery. As a result, for the HV-MT vehicle, by using the internal-combustion-engine torque, the battery for supplying the electric motor with the electric energy can be efficiently charged.