Abstract:
An image display apparatus according to an embodiment includes: a plurality of panels arranged in a matrix form, each panel having, on its display surface, a plurality of pixels arranged in a matrix form; a first junction portion provided between the panels adjacent to each other in a horizontal direction; a second junction portion provided between the panels adjacent to each other in a vertical direction; a first optical member covering the first junction portion, and magnifying or diffusing the pixels of the panels in the vicinity of the first junction portion with an anisotropy in a first direction; and a second optical member covering the second junction portion, and magnifying and diffusing the pixels of the panels in the vicinity of the second junction portion with an anisotropy in a second direction.
Abstract:
In an apparatus for displaying a three-dimensional image, sub-pixels having color components are arranged in a longitudinal direction and in a lateral direction in a matrix form, in a display section for displaying a flat image, and a light ray control element is disposed so as to be opposed to the display section. In the light ray control element, linear optical openings extending in a vertical direction are arranged in the lateral direction. A sum of opening area lengths of opening areas of a plurality of sub-pixels adjacent to each other in a horizontal direction is varied in a single row, and the sum thereof in a plurality of rows becomes constant. Further, an arrangement of the sub-pixels is a color arrangement of a mosaic arrangement or a lateral stripe arrangement.
Abstract:
A stereoscopic image display apparatus is structured such that strip-shaped electrodes opposing a planar electrode and having end electrodes and a center electrode are disposed at intervals in a pitch direction of the liquid crystal lens array, such that a potential difference between the planar electrode and the center electrode is set smaller than a rising voltage Vth of the liquid crystal layer and a third voltage V3 larger in absolute value than a first voltage V1 applied to the planar electrode and a second voltage V2 applied to the center electrode and also larger than the rising voltage is applied to the end electrodes, and such that the relation 0.075
Abstract:
If areas corresponding to the address electrodes in the second row have an area to be stereoscopic display and an area not to be stereoscopic display and an area of the connecting wire of the far electrode corresponding to the area to be stereoscopic display in the second column is included in the area not to be stereoscopic display in the first column, then a third address voltage obtained by inverting the first address voltage in positive-negative polarity is applied to the address electrodes in the second row, a third column voltage obtained by inverting the first column voltage in positive-negative polarity is applied to the far electrode corresponding to the area to be stereoscopic display, and a fourth column voltage obtained by inverting the second column voltage in positive-negative polarity is applied to the far electrode corresponding to the area not to be stereoscopic display.
Abstract:
It is possible to prevent an image processing amount from increasing and obtain excellent display characteristics. A stereoscopic image display apparatus includes: a flat display device having approximately square pixels arranged on a flat display plane in a square manner: and an optical plate which is disposed in front of the display device and has optical apertures which extend linearly in the same direction as a diagonal line of a rectangle obtained by connecting n pieces of the pixels vertically, for controlling directions of light rays from the pixels. The flat display plane of the flat display device are divided to elemental images, each corresponding to each of the optical apertures in the optical plate, and an average value of pitches of the elemental images is larger than m (m=1,2,3 . . . ) times a length of a diagonal line of a rectangle obtained by connecting n pieces of the pixels laterally and the pitch of the optical apertures in the optical plate is equal to m times the length of the diagonal line of the rectangle obtained by connecting n pieces of the pixels laterally.
Abstract:
It is made possible to satisfy such a condition that moire or color moire is suppressed and a fast image processing is made easy and such a condition that sufficient image quality can be obtained both at a flat image display time and at a stereoscopic image display time simultaneously. A vertical period of pixel rows having the pixels arranged in one row in a lateral direction is three times a lateral period of the pixels, the pixels developing red, green and blue are alternately arranged in a lateral direction in the same row, the pixels in one row of two rows adjacent in a vertical direction are arranged such that lateral positions thereof are shifted to the pixels in the other row by 1/2 of the lateral period of the pixels, the pixels in rows adjacent in the same column through one row interposed therebetween are the pixels developing different colors of red, green and blue, and a pitch of the elemental images is equal to a width of 18n (n=1, 2, 3 . . . ) pieces of the pixels, and a lateral pitch of the beam control element is smaller than the width of the 18n pieces of the pixels.
Abstract:
In a one-dimensional IP (vertical disparity discarding system), it is made possible to obtain a perspective projection image with no distortion or reduced distortion. A stereoscopic display device is provided with a display device including a display plane in which pixels are arranged flatly in a matrix shape; and a parallax barrier including a plurality of apertures or a plurality of lenses and being configured to control directions of rays from the pixels such that a horizontal disparity is included but a vertical disparity is not included. A horizontal direction pitch of the parallax barrier is integer times a horizontal pitch of the pixels, the display plane of the display device is divided so as to correspond to elemental images for respective apertures or the lenses of the parallax barrier, and an image whose vertical direction corresponds to a perspective projection in a fixed viewing distance and whose horizontal direction corresponds to an orthographic projection is divided and arranged for respective columns of the pixels.
Abstract:
It is made possible to provide a three-dimensional image display device by which a viewing zone can be readily adjusted in the parallel-ray one-dimensional IP system, without a decrease in processing speed. A three-dimensional image display device includes: an elemental image display unit that has pixels arranged in a matrix form in a display plane, and displays an elemental image; an optical plate that is placed to face the elemental image display unit, extends straightly in a vertical direction, and controls a light ray from the elemental image display unit, the optical plate having optical apertures arranged at intervals in a horizontal direction; and an image data converting unit that converts image data so as to replace missing image data with a neighboring parallax component in same the elemental image, based on the average width of elemental images in an input image data and the optimum average width of elemental images in a three-dimensional video image to be output.
Abstract:
In a II system display apparatus, in a normal display mode, a parallax component image is divided into pieces corresponding to respective columns for a parallax interleaved image. The component image is obtained by subjecting a subject to perspective projection in a vertical direction and to orthographic projection in a horizontal direction. In a compressed and emphasized display mode, the component image is divided into pieces corresponding to respective columns. The component image is obtained by subjecting the subject to perspective projection in both vertical and horizontal directions. In a multiview compatible mode, the component image is divided into pieces corresponding to respective columns so that the same piece is provided for a plurality of adjacent columns. The component image is obtained by subjecting the subject to perspective projection in both vertical and horizontal directions.
Abstract:
A three-dimensional display apparatus is provided with an optical element including optical apertures arranged opposite a display module and in association with the parallax images. The optical apertures cause the parallax images to be displayed in a near-side region closer to an observer, while causing a three-dimensional image to be displayed in a far-side region located opposite the observer with respect to the display module. When a smooth three-dimensional image is to be displayed in the near-side region, the optical gap between the optical element and the display surface is set longer than a reference distance depending on the position of the three-dimensional image. In order to display a smooth three-dimensional image in the far-side region, the observer sets the optical gap shorter than the reference distance depending on the position of the three-dimensional image.