Abstract:
Provided are a rubber composition for a tire cord topping, a breaker edge strip, a breaker cushion, or a strip adjacent to cords, which achieves a balanced improvement in handling stability, fuel economy, durability, ride quality, and adhesion; and pneumatic tires including the same. The rubber composition includes: an isoprene-based rubber; a phenol resin and/or an alkylphenol resin; and a partial condensate of HMMM and/or a partial condensate of HMMPME, wherein an amount of the isoprene-based rubber is 60% by mass or higher per 100% by mass of the rubber component; and combined amount of the phenol resin and the alkylphenol resin is 2-3.9 parts by mass, combined amount of the partial condensate of HMMM and the partial condensate of HMMPME is 0.5-5 parts by mass, and an amount of silica is at most 15 parts by mass, each per 100 parts by mass of the rubber component.
Abstract:
A rubber composition for a breaker topping can achieve balanced improvement of fuel economy, hardness, elongation at break, and adhesion. A pneumatic tire includes a breaker produced using the rubber composition. The rubber composition for a breaker topping includes a rubber component; silica; sulfur; a certain vulcanization accelerator; a compound represented by the following formula and/or a hydrate thereof; and stearic acid and/or cobalt stearate, wherein the mass ratio of the sulfur/the vulcanization accelerator and the total amount of stearic acid and cobalt stearate are set to the respective certain values, the formula being: MO3S—S—(CH2)q—S—SO3M wherein q represents an integer of 3 to 10, and Ms are the same as or different from each other, each representing lithium, potassium, sodium, magnesium, calcium, barium, zinc, nickel, or cobalt.
Abstract:
The present invention provides a pneumatic tire having excellent durability. Provided is a pneumatic tire including a sidewall and a carcass, the sidewall being produced from a rubber composition for a sidewall which has a specific sulfur content, the carcass being produced from a carcass cord covered with a rubber composition for a carcass topping, and the sulfur contents of the rubber composition for a sidewall and the rubber composition for a carcass topping satisfying a specific relationship. Provided is a pneumatic tire including a clinch and a carcass, the clinch being produced from a rubber composition for a clinch which has a specific sulfur content, the carcass being produced from a carcass cord covered with a rubber composition for a carcass topping, and the sulfur contents of the rubber composition for a clinch and the rubber composition for a carcass topping satisfying a specific relationship.
Abstract:
The invention relates to a rubber composition for a tire, containing an isoprene-based rubber and a compound represented by formula (1) below, wherein an amount of the isoprene-based rubber is at least 70% by mass; and an amount of the compound represented by formula (1) is 0.5-6 parts by mass per 100 parts by mass of the rubber component. The invention also relates to a rubber composition for a tire, containing an alkylphenol-sulfur chloride condensate and a compound represented by formula (1) below, wherein an amount of the alkylphenol-sulfur chloride condensate is 0.4-6 parts by mass, and an amount of the compound represented by formula (1) is 0.5-6 parts by mass, each per 100 parts by mass of a rubber component of the rubber composition: wherein R1 represents a C2-C16 alkyl group; and R2 represents a C3-C16 alkyl, benzothiazolyl-sulfide, or cycloalkyl group.
Abstract:
A tire satisfying both of the low rolling resistance of the tire and the improvement of tire strength is provided. A tire including sidewall including a rubber composition for sidewall including a rubber composition including a rubber component including 35 to 65% by mass of NR and/or IR, 15 to 55% by mass of a modified BR and 0 to 50% by mass of other rubber and 20 to 40 parts by mass of filler, in which complex elastic modulus E* is 2.0 to 3.5 MPa and tan δ is less than 0.12; case in which cord is covered with a rubber composition for covering case cord including a rubber component including 50 to 80% by mass of NR and/or IR, 20 to 45% by mass of diene rubber of a modified SBR, a modified BR or ENR and 0 to 30% by mass of other rubber and 20 to 40 parts by mass of filler, in which E* is 2.0 to 3.5 MPa and tan δ is less than 0.12; and clinch including a rubber composition for clinch including a rubber component including 30 to 50% by mass of NR and/or IR, 15 to 70% by mass of a modified BR and 0 to 55% by mass of other rubber and 35 to 80 parts by mass of filler, in which E* is 4.5 to 9.0 MPa and tan δ is less than 0.12.
Abstract:
Rubber compositions excellent in durability are disclosed, as well as a pneumatic tire including a band and/or a breaker edge strip formed from the rubber compositions. A rubber composition for a band topping includes, per 100 parts by mass a rubber component containing not less than 50% by mass of an isoprene-based rubber, predetermined amounts of sulfur, a compound such as resorcinol resins, a compound such as partial condensates of hexamethoxymethylol melamine, silica, and a carbon black having a nitrogen adsorption specific surface area of 38 to 125 m2/g. A rubber composition for a breaker edge strip includes, per 100 parts by mass of a rubber component containing not less than 50% by mass of an isoprene-based rubber, predetermined amounts of sulfur, a compound such as resorcinol resins, a compound such as partial condensates of hexamethoxymethylol melamine, and a cobalt salt of an organic acid.
Abstract:
The present invention relates to a rubber composition for a sidewall, a clinch and an insulation comprising 20 to 60 parts by mass of filler, 1.0 to 4.0 parts by mass of sulfur and 0.1 to 10 parts by mass of at least one vulcanization accelerating aid selected from a group comprising a citraconimide compound, an organic thiosulfate compound, an alkylphenol-sulfur chloride condensate, a compound represented by the formula (2) and a metal salt of methacrylic acid represented by the formula (3), based on 100 parts by mass of a diene rubber component comprising 10 to 70% by mass of at least one diene rubber component (a) selected from a group comprising a solution polymerization-modified styrene-butadiene rubber, a tin-modified butadiene rubber and a butadiene rubber whose terminal is modified with a compound represented by the formula (1), and 20 to 80% by mass of a diene rubber component (b) other than the diene rubber component (a) for the purpose of improving rolling resistance and steering stability.
Abstract:
The present invention aims to provide a rubber composition for a clinch or chafer which enables to improve the rim chafing resistance, elongation at break, handling stability, and fuel economy in a balanced manner, and to reduce the number of broken spews in tire demolding; and a pneumatic tire produced using the rubber composition. The rubber composition for a clinch or chafer includes 100 parts by mass of a rubber component; 1.2 to 2.9 parts by mass of zinc oxide; and 2.2 to 4.0 parts by mass of stearic acid, the rubber component including 15 to 80% by mass of a butadiene rubber and 15 to 50% by mass of an isoprene-based rubber based on 100% by mass of the rubber component.
Abstract:
In a lens actuator according to an exemplary embodiment, wires that connect a holder and a base of a movable unit have diameters of 30 μm or more and less than 70 μm, and the wires have longitudinal elastic moduli of 100 GPa or more and less than 500 GPa. The wire is flexible even if a small amount of currents are passed through a plurality of OIS coils, and the lens actuator suitable to electric power saving can be provided.
Abstract:
Provided are a rubber composition for a breaker topping which can achieve balanced improvement of fuel economy, hardness, elongation at break, and adhesion; and a pneumatic tire using the rubber composition. The rubber composition for a breaker topping includes a rubber component; silica; sulfur; a certain vulcanization accelerator; a compound represented by the following formula and/or a hydrate thereof; and stearic acid and/or cobalt stearate, wherein the mass ratio of the sulfur/the vulcanization accelerator and the total amount of stearic acid and cobalt stearate are set to the respective certain values, the formula being: MO3S—S—(CH2)q—S—SO3M wherein q represents an integer of 3 to 10, and Ms are the same as or different from each other, each representing lithium, potassium, sodium, magnesium, calcium, barium, zinc, nickel, or cobalt.