Abstract:
A fluid pressure reduction device comprises two or more stackable annular plates. Each disk having a perimeter and a hollow center aligned along a longitudinal axis when the annular plates are stacked one on top of the other. Each disk further comprising at least one inlet flow sector having an inlet flow stage for defining a first inlet area and a first outlet area, and at least one outlet flow sector having an outlet flow stage defining a second inlet area and a second outlet areas wherein the ratio of the second inlet area to the second outlet area is predetermined to define a backpressure at the outlet flow stage to provide a sub-sonic fluid flow at the perimeter.
Abstract:
A fluid pressure reduction device comprises two or more stackable annular plates. Each disk having a perimeter and a hollow center aligned along a longitudinal axis when the annular plates are stacked one on top of the other. Each disk further comprising at least one inlet flow sector having an inlet flow stage for defining a first inlet area and a first outlet area, and at least one outlet flow sector having an outlet flow stage defining a second inlet area and a second outlet areas wherein the ratio of the second inlet area to the second outlet area is predetermined to define a backpressure at the outlet flow stage to provide a sub-sonic fluid flow at the perimeter.
Abstract:
A pneumatic valve actuator for moving the valve stem of a control valve comprises an upper casing and a lower casing each having flanges, a diaphragm plate operatively coupled to the valve stem, a spring arranged to bias the diaphragm plate in a first direction, a diaphragm movable in conjunction movement of the diaphragm plate, an air inlet defined in the casing and arranged for attachment to an air supply source to bias the diaphragm plate in a second direction, and a ring disposed between the upper flange and the lower flange and positioned to engage the outer portion of the diaphragm. The ring includes a protrusion positioned to engage a surface of the outer portion of the diaphragm.
Abstract:
A pneumatic valve actuator for moving the valve stem of a control valve comprises an upper casing and a lower casing each having flanges, a diaphragm plate operatively coupled to the valve stem, a spring arranged to bias the diaphragm plate in a first direction, a diaphragm movable in conjunction movement of the diaphragm plate, an air inlet defined in the casing and arranged for attachment to an air supply source to bias the diaphragm plate in a second direction, and a ring disposed between the upper flange and the lower flange and positioned to engage the outer portion of the diaphragm. The ring includes a protrusion positioned to engage a surface of the outer portion of the diaphragm.
Abstract:
A bellows energized seal assembly includes a seal body, a main seal that is axially slidable within the seal body, and a bellows connected to the seal body and the main seal. The bellows both biases the main seal and provides a seal between the seal body and the main seal.
Abstract:
A bellows energized seal assembly includes a seal body, a main seal that is axially slidable within the seal body, and a bellows connected to the seal body and the main seal. The bellows both biases the main seal and provides a seal between the seal body and the main seal.
Abstract:
The rubber compositions described herein have been found to have an exceptionally long life as a spring-biased actuator diaphragm material that maintains its position compressed, e.g., bolted, between opposed flanges, while maintaining excellent compressibility, low temperature flexibility, hydrocarbon resistance, abrasion resistance and mechanical strength. The compositions include a copolymer rubber component; a plasticizer for the copolymer rubber; a vulcanizing agent for the copolymer rubber; a silica filler; and a coupling agent, such as a silane coupling agent, capable of coupling the silica filler to the copolymer rubber.
Abstract:
A seal assembly is adapted for use in a valve having a trim cage with an inner surface extending along an axis and a plug sized to fit inside the trim cage inner surface, wherein the plug is adapted to move along the axis. The seal assembly includes a spring-loaded seal ring disposed between the plug and the trim cage inner surface, the seal ring including a center spring member and a jacket formed of a fluoropolymer resin to tightly seal between the plug and the trim cage inner surface. A first wiper ring is disposed between the plug and the trim cage inner surface and positioned axially upstream of the seal ring, and a second wiper ring is disposed between the plug and the trim cage inner surface and positioned axially downstream of the seal ring. Each of the first and second wiper rings has an outside surface sized to engage the trim cage inner surface and is formed of a material sufficiently rigid to scrape foreign material from the bore surface yet sufficiently soft to minimize damage to the bore.
Abstract:
A system and method for collecting data relating to emissions from an emissions source is disclosed. The system comprises an accumulator adapted to receive emissions from the emissions source, a sensor in flow communication with an outlet of the accumulator for generating a signal indicative of a physical property of the emissions, and a sensor interface circuit receiving the signal and generating data relating to the emissions from the emissions source. A system and method for reducing emissions from an emissions source is also disclosed, including a microcontroller receiving data relating to the emissions from the emissions source and generating control signals for reducing the emissions.
Abstract:
A fluid seal for ball control valves formed from a composition comprising a fluorinated resin, a reinforcing polymer, and, optionally, molybdenum disulfide, which has been compression molded in a tube mold, heat sintered and annealed. Such a formed ball seal has improved properties of chemical resistance, hydrolysis and creep resistance, a sufficient hardness for low wear, a reduced coefficient of friction, and is virtually nonabrasive.