Abstract:
A method including providing a semiconductor substrate including a first semiconductor device and a second semiconductor device, the first and second semiconductor devices including dummy spacers, dummy gates, and extension regions; protecting the second semiconductor device with a mask; removing the dummy spacers from the first semiconductor device; and depositing in-situ doped epitaxial regions on top of the extension regions of the first semiconductor device.
Abstract:
Disclosed is a semiconductor article which includes a semiconductor substrate; a gate structure having a spacer adjacent to a conducting material of the gate structure wherein a corner of the spacer is faceted to create a faceted space between the faceted spacer and the semiconductor substrate; and a raised source/drain adjacent to the gate structure, the raised source/drain filling the faceted space and having a surface parallel to the semiconductor substrate. Also disclosed is a method of making the semiconductor article.
Abstract:
The present invention discloses that under modified chemical vapor deposition (mCVD) conditions an epitaxial silicon film may be formed by exposing a substrate contained within a chamber to a relatively high carrier gas flow rate in combination with a relatively low silicon precursor flow rate at a temperature of less than about 550° C. and a pressure in the range of about 10 mTorr-200 Torr. Furthermore, the crystalline Si may be in situ doped to contain relatively high levels of substitutional carbon by carrying out the deposition at a relatively high flow rate using tetrasilane as a silicon source and a carbon-containing gas such as dodecalmethylcyclohexasilane or tetramethyldisilane under modified CVD conditions.
Abstract:
A method and structure of an embedded stressor in a semiconductor transistor device having a sigma-shaped channel sidewall and a vertical isolation sidewall. The embedded stressor structure is made by a first etch to form a recess in a substrate having a gate and first and second spacers. The second spacers are removed and a second etch creates a step in the recess on a channel sidewall. An anisotropic etch creates facets in the channel sidewall of the recess. Where the facets meet, a vertex is formed. The depth of the vertex is determined by the second etch depth (step depth). The lateral position of the vertex is determined by the thickness of the first spacers. A semiconductor material having a different lattice spacing than the substrate is formed in the recess to achieve the embedded stressor structure.
Abstract:
A method of forming a semiconductor structure which includes an extremely thin silicon-on-insulator (ETSOI) semiconductor structure having a PFET portion and an NFET portion, a gate structure in the PFET portion and the NFET portion, a high quality nitride spacer adjacent to the gate structures in the PFET portion and the NFET portion and a doped faceted epitaxial silicon germanium raised source/drain (RSD) in the PFET portion. An amorphous silicon layer is formed on the RSD in the PFET portion. A faceted epitaxial silicon RSD is formed on the ETSOI adjacent to the high quality nitride in the NFET portion. The amorphous layer in the PFET portion prevents epitaxial growth in the PFET portion during formation of the RSD in the NFET portion. Extensions are ion implanted into the ETSOI underneath the gate structure in the NFET portion.
Abstract:
A method including providing a semiconductor substrate including a first semiconductor device and a second semiconductor device, the first and second semiconductor devices including dummy spacers, dummy gates, and extension regions; protecting the second semiconductor device with a mask; removing the dummy spacers from the first semiconductor device; and depositing in-situ doped epitaxial regions on top of the extension regions of the first semiconductor device.
Abstract:
A method of forming a semiconductor structure includes providing an active layer and forming adjacent gate structures on the active layer. The gate structures each have sidewalls such that first spacers are formed on the sidewalls. A raised region is epitaxially grown on the active layer between the adjacent gate structures and at least one trench that extends through the raised region and through the active region is formed, whereby the at least one trench separates the raised region into a first raised region corresponding to a first transistor and a second raised region corresponding to a second transistor. The first raised region and second raised region are electrically isolated by the at least one trench.
Abstract:
A semiconductor integrated circuit is provided and includes a first field effect transistor (FET) device and a second FET device formed on a semiconductor substrate. The first FET device has raised source/drain (RSD) structures grown at a first height. The second FET device has RSD structures grown at a second height greater than the first height such that a threshold voltage of the second FET device is greater than a threshold voltage of the first FET device.
Abstract:
An improved silicon carbon film structure is disclosed. The film structure comprises multiple layers of silicon carbon and silicon. The multiple layers form stress film structures that have increased substitutional carbon content, and serve to induce stresses that improve carrier mobility for certain types of field effect transistors.
Abstract:
A heterojunction bipolar transistor (HBT) may include an n-type doped crystalline collector formed in an upper portion of a crystalline silicon substrate layer; a p-type doped crystalline p+Si1-xGex layer, formed above the n-type doped collector, that forms a p-type doped internal base of the HBT; a crystalline silicon cap formed on the p-type doped crystalline p+Si1-xGex layer, in which the crystalline silicon cap includes an n-type impurity and forms an n-type doped emitter of the HBT; and an n-type doped crystalline silicon emitter stack formed within an opening through an insulating layer to an upper surface of the crystalline silicon cap.