摘要:
A semiconductor device includes: a p-type MIS transistor having a first gate electrode including silicon doped with p-type impurities; an n-type MIS transistor having a second gate electrode including silicon doped with n-type impurities; and a shared line which connects the p-type MIS transistor and the n-type MIS transistor and serves as a path of a power supply current or a ground current, the shared line including silicided silicon. The first gate electrode and the second gate electrode have silicided top portions, respectively, to establish electrical connection therebetween and the shared line has a line width larger than the line widths of the first gate electrode and the second gate electrode.
摘要:
An apparatus for generating plasma is disclosed. The apparatus comprises: a plasma chamber; pairs of parallel plate electrodes; and a power supply for applying high-frequency powers on the pairs of electrodes. The frequencies of the high-frequency powers and the phase difference between the high-frequency powers are adjusted so as to cause each of electrons in the plasma to move in a circular path. A dense and highly uniform plasma is generated at a low pressure level, by utilizing the phenomenon of the oscillation, revolution or cycloidal motion of electrons in a high-frequency electric field formed between the parallel plate electrodes. This plasma is suitable for etching in the LSI fabrication process.
摘要:
A plasma generating apparatus includes a vacuum chamber having an insulated inner surface, more than two electrodes arranged on the insulated inner surface of the vacuum chamber, a high frequency applying device for applying high frequencies having different phases in order of positions of the electrodes, and a holder on which an object to be processed is placed. In the apparatus, a magnetic field is produced under plural alternating electric fields, so that electrons in a plasma generating portion are rotated to generate high density plasma under a high vacuum when the high frequencies are applied to the electrodes to generate the plasma and a specified process such as etching, CVD, or doping is carried on the object by reaction products generated at the portion.
摘要:
Three electrodes are disposed at lateral sides of a plasma generating chamber of an etching apparatus serving as a plasma generating apparatus. A sample stage is disposed at a lower part of the plasma generating chamber, and an opposite electrode is disposed at an upper part thereof. High frequency electric power having a first frequency is supplied to the sample stage and the opposite electrode. Respectively supplied to the three electrodes 4, 5, 6 are high frequency electric powers which are oscillated by a three-phase magnetron, which have a second frequency different from the first frequency and of which respective phases are successively different by about 120.degree. from one another, thus forming a rotational electric field in the plasma generating chamber.
摘要:
A dry etching method for dry etching a silicon oxide film or a multilayer oxide film thereof which enables formation of contact window to good dimensional precision and with stable etching configuration in the process of film etching at submicron level. A compound gas containing a C element or S element or Cl element, and F element (e.g., CF.sub.4) is used as a principal gas, and a compound gas containing a C element and two or more of H elements (e.g., CH.sub.2 F.sub.2) as an additive gas is used, in the process of dry etching silicon oxide film or a multilayer film thereof. By using principal and additive gases having good step coverage of deposit produced by plasma reaction, it is possible to eliminate any etching residue and form contact windows having stable etching configuration and good dimensional accuracy in the process of film etching at submicron level. By using a compound gas containing a greater number of H element atoms than C element atoms, the deposit on the etching side wall can be a soluble one having a low F element content, such as (C.sub.x H.sub.y)n polymer, and can be readily removed through after-etching washing.
摘要翻译:用于干蚀刻氧化硅膜或其多层氧化物膜的干蚀刻方法,其能够在亚微米级别的膜蚀刻过程中形成接触窗以具有良好的尺寸精度和稳定的蚀刻构造。 使用含有C元素或S元素或Cl元素和F元素(例如CF 4)的复合气体作为主要气体,并且将包含C元素和两种或多种H元素(例如CH 2 F 2)的化合物气体用作 在氧化硅干法蚀刻或其多层膜的过程中,使用添加气体。 通过使用通过等离子体反应产生的沉积具有良好阶梯覆盖的主要和附加气体,可以在亚微米级的膜蚀刻过程中消除任何蚀刻残留物并形成具有稳定蚀刻构造和良好尺寸精度的接触窗口。 通过使用含有比C元素原子多的H元素原子的复合气体,蚀刻侧壁上的沉积物可以是具有低F元素含量的可溶性沉积物,例如(C x H y)n聚合物,并且可以容易地除去 通过蚀刻后的洗涤。
摘要:
A method of fabricating a semiconductor device which includes:(1) a step of forming an opening in a silicon substrate using a first silicon oxide film and a first silicon nitride film formed on the silicon substrate as masks,(2) a step of forming a second silicon oxide film and a second silicon nitride film on the side wall of the opening by the reduced pressure CVD method and anisotropic etching method,(3) a step of performing isotropic dry etching using the first and second silicon oxide films as masks, and(4) a step of performing heat treatment in an oxidizing atmosphere using the first and second silicon nitride films as masks.Thereby, uniform isotropic etching may be accomplished by use of the dry etching method.
摘要:
A semiconductor device includes a plurality of first cells having a first cell height, and a plurality of second cells having a second cell height. Each of the first cells has a first MIS transistor of a first conductivity type, and a substrate contact region of a second conductivity type. Each of the second cells has a second MIS transistor of the first conductivity type, a power supply region of the first conductivity type, and a first extended region of the first conductivity type that is silicidated at a surface thereof. The first cell height is greater than the second cell height.
摘要:
A semiconductor device including a SRAM section and a logic circuit section includes: a first n-type MIS transistor including a first n-type gate electrode formed with a first gate insulating film interposed on a first element formation region of a semiconductor substrate in the SRAM section; and a second n-type MIS transistor including a second n-type gate electrode formed with a second gate insulating film interposed on a second element formation region of the semiconductor substrate in the logic circuit section. A first impurity concentration of a first n-type impurity in the first n-type gate electrode is lower than a second impurity concentration of a second n-type impurity in the second n-type gate electrode.
摘要:
A semiconductor device including a SRAM section and a logic circuit section includes: a first n-type MIS transistor including a first n-type gate electrode formed with a first gate insulating film interposed on a first element formation region of a semiconductor substrate in the SRAM section; and a second n-type MIS transistor including a second n-type gate electrode formed with a second gate insulating film interposed on a second element formation region of the semiconductor substrate in the logic circuit section. A first impurity concentration of a first n-type impurity in the first n-type gate electrode is lower than a second impurity concentration of a second n-type impurity in the second n-type gate electrode.
摘要:
In the mask data generation method, optical simulation is performed on a dual gate including a first gate portion doped with an impurity of a first conductivity type and a second gate portion doped with an impurity of a second conductivity type for correcting design data including the dual gate. Specifically, a first dimesion difference of the first gate portion between a resist dimension obtained in lithography and a dimension obtained after dryetch following the lithography is calculated. Next, a second dimension difference of the second gate portion between a resist dimension obtained in the lithography and a dimension obtained after the dryetch is calculated. Furthermore, after calculating a difference between the first dimension difference and the second dimension difference, the first gate portion or the second gate portion is corrected in the design data by using the calculated difference. Thereafter, the optical simulation is executed on the design data having been corrected by using the difference, so as to generate mask data.