摘要:
In arithmetic/logic units (ALU) provided corresponding to entries, an MIMD instruction decoder generating a group of control signals in accordance with a Multiple Instruction-Multiple Data (MIMD) instruction and an MIMD register storing data designating the MIMD instruction are provided, and an inter-ALU communication circuit is provided. The amount and direction of movement of the inter-ALU communication circuit are set by data bits stored in a movement data register. It is possible to execute data movement and arithmetic/logic operation with the amount of movement and operation instruction set individually for each ALU unit. Therefore, in a Single Instruction-Multiple Data type processing device, Multiple Instruction-Multiple Data operation can be executed at high speed in a flexible manner.
摘要:
In arithmetic/logic units (ALU) provided corresponding to entries, an MIMD instruction decoder generating a group of control signals in accordance with a Multiple Instruction-Multiple Data (MIMD) instruction and an MIMD register storing data designating the MIMD instruction are provided, and an inter-ALU communication circuit is provided. The amount and direction of movement of the inter-ALU communication circuit are set by data bits stored in a movement data register. It is possible to execute data movement and arithmetic/logic operation with the amount of movement and operation instruction set individually for each ALU unit. Therefore, in a Single Instruction-Multiple Data type processing device, Multiple Instruction-Multiple Data operation can be executed at high speed in a flexible manner.
摘要:
In arithmetic/logic units (ALU) provided corresponding to entries, an MIMD instruction decoder generating a group of control signals in accordance with a Multiple Instruction Multiple Data (MIME) instruction and an MIMD register storing data designating the MIME instruction are provided, and an inter-ALU communication circuit is provided. The amount and direction of movement of the inter-ALU communication circuit are set by data bits stored in a movement data register. It is possible to execute data movement and arithmetic/logic operation with the amount of movement and operation instruction set individually for each ALU unit Therefore, in a Single Instruction-Multiple Data type processing device, Multiple Instruction-Multiple Data operation can be executed at high speed in a flexible manner.
摘要:
A reconfigurable logic block has a first circuit that configures an arithmetic circuit and a second circuit that configures a circuit outside of the arithmetic circuit. A plurality of different circuits are configured by changing the settings of predetermined signals in the first and second circuits.
摘要:
A programmable logic circuit device has a plurality of logic blocks, a plurality of routing wires, a plurality of switch circuits, a plurality of connection blocks, and an I/O block performing an input/output operation with external equipment. The routing wires are connected to each of the logic blocks, the switch circuits are provided at an intersection of each of the routing wires, and the connection blocks are provided between an I/O line of each of the logic blocks and each of the routing wires. Each of the logic blocks has a look up table of M inputs and N outputs, which has a plurality of LUT units; and an internal configuration control circuit controlling an internal configuration of the plurality of LUT units.
摘要:
A reconfigurable logic block has a first circuit that configures an arithmetic circuit and a second circuit that configures a circuit outside of the arithmetic circuit. A plurality of different circuits are configured by changing the settings of predetermined signals in the first and second circuits.