Abstract:
Methods, systems, and devices for dynamic spectrum access in a single-channel MANET are described. An example system for network management includes a first wireless device configured to perform, using a receive mode and a transmit mode, data communications on a first channel associated with a first single-channel network, and transmit, using the transmit mode, network advertisement messages on a second channel associated with a second single-channel network, wherein each of the network advertisement messages comprises one or more characteristics of the first single-channel network, and a second wireless device configured to perform, using the receive mode and the transmit mode, data communications on the second channel, acquire, using the receive mode, at least one network advertisement message of the network advertisement messages on the second channel, and perform, based on the at least one network advertisement message, a comparison between the first single-channel network and the second single-channel network.
Abstract:
Methods and systems for reliable broadcasting that use re-transmissions, in a multi-hop, time-slotted wireless network, is presented. The methods and systems evaluate the trade-off between power consumption and communication reliability, and are consequently able to provide increasing degrees of robustness for broadcasts in the wireless network. Embodiments of the present invention are able to incrementally use re-transmissions, therein trading-off battery life for an increased message completion rate or a lower packet error rate, for example, in order to reliably broadcast critical or high-priority message network-wide.
Abstract:
The estimation and mitigation of swept-tone interferers includes receiving a composite signal comprising a signal of interest and a swept-tone interferer over an observation bandwidth or a hop bandwidth in a frequency-hopping system. The estimation of the interfering signal may be based on modeling the interferer as a magnitude periodic signal comprising non-overlapping, contiguous epochs, where each epoch may comprise a common pulse shape and a distinct phase rotation. The modeling may be based over the observation bandwidth, the hop bandwidth, or after combining the signal over all the frequency hop bandwidths. The period of the magnitude-periodic signal may be initially determined, and the common pulse shape and each of the distinct phase rotations may then be estimated. These estimates may be used to reconstruct an estimate of the swept-tone interferer, which may be subtracted from the composite signal to generate an interference-mitigated signal of interest.
Abstract:
A method for interference estimation and mitigation includes receiving a high-resolution digital signal. The high-resolution digital signal comprises a signal of interest and an interfering signal. An estimate of the interfering signal is generated using a quantizer. The signal of interest is in a quantization noise of the quantizer. An interference-mitigated signal of interest is generated based on a difference of the estimate of the interfering signal and the high-resolution digital signal.
Abstract:
A method and system for flexible radio communications using a wideband radio includes a wideband radio and multiple separable radio definition modules, wherein the wideband radio is configured to operate over a large portion of the radio-frequency (RF) spectrum and each of the radio definition modules are configured to operate in a specific frequency band. The separability of the radio definition modules maintains the capability of the wideband radio to operate over the large portion of the RF spectrum, as well as enabling its robust and reliable operation in a specific frequency band associated with the attached radio definition module.
Abstract:
An apparatus for joint analog and digital interference cancellation includes a receiver configured to receive an analog reference interfering signal on a reference path, and a sum of an analog interference signal and an analog signal of interest on an antenna path. An analog interference canceller may be configured to produce an analog partially interference-cancelled signal using the analog reference interfering signal and the sum of the analog interference signal and the analog signal of interest. A first analog-to-digital converter may be configured to digitize the analog reference interfering signal to produce a digital reference interfering signal. A second analog-to-digital converter may be configured to digitize the analog partially interference-cancelled signal to produce a digital partially interference-cancelled signal. A digital interference canceller may be configured to produce an interference-cancelled signal using the digital reference interfering signal and the digital partially interference-cancelled signal.
Abstract:
A method for secure key agreement among a subset of a plurality of transceivers includes generating a first ordered subset of a plurality of keys kλj, where j=0 to S. Each of the subset of the plurality of transceivers may possess at least one of the plurality of keys kλj from the first ordered subset. Each of the subset of the plurality of transceivers possessing one or more keys kλi, i=1 to S, also possesses at least one key from a second ordered subset of the plurality of keys kλj, j=0 to i−1. A key with index λ0 is designated as a group key. A binary sum of the group key kλ0 and a key kλj, where j≠0, is transmitted from one or more of the subset of the plurality of transceivers that possesses the group key kλ0.
Abstract:
Systems and methods are presented for conducting a relayed communication involving a source node, a plurality of intermediate nodes, and at least one destination node, involving at the source node transmitting a signal associated with the relayed communication on a first medium allocation, at each one of the plurality of intermediate nodes relaying the signal onto a next medium allocation in response to receiving the signal as transmitted on at least one medium allocation up to a current medium allocation, and at the at least one destination node receiving the signal as transmitted on at least one medium allocation up to a last medium allocation, wherein at least one node among the plurality of intermediate nodes and the at least one destination node receives signals associated with the relayed communication from multiple intermediate nodes as transmitted on at least one medium allocation.
Abstract:
Devices, systems, and methods for software-defined cognitive networking for wireless communications are provided. An example method of wireless communication includes performing, at a first node of a plurality of nodes, multiple network interference measurements to generate a first local interference model, receiving, from a second node of the plurality of nodes, a second local interference model, combining, at the first node, the first local interference model and the second local interference model to generate a joint interference model, generating, based on the joint interference model, a plurality of interference parameters that characterize a communication channel between the first node and the second node, selecting, based on the plurality of interference parameters, an operating waveform from a plurality of waveforms such that a performance metric for a data communication from the first node to the second node exceeds a threshold, and performing, using the operating waveform, the data communication.
Abstract:
Methods, systems and devices for interference cancellation of high-power input signals in the analog domain are described. An example method of interference cancellation includes receiving, via an antenna, an analog signal comprising a signal of interest and one or more interfering signals, wherein the one or more interfering signals comprises a high-power interfering signal with a signal power greater than 15 dBm, determining, based on a reference signal corresponding to the high-power interfering signal, an update to at least one parameter of the reference signal, wherein the update is determined by minimizing a cost function of a difference between the reference signal and the high-power interfering signal, generating, based on the update to the at least one parameter, a modified reference signal, and generating, based on coupling the modified reference signal to the analog signal, an interference-canceled signal comprising the signal of interest.