Abstract:
A measuring equipment, such as a vector network analyzer, is provided. The measuring equipment includes a first port and a second port, a probe connected to the first port, an antenna connected to the second port, and a test board corresponding to a type of a device-under-test. A probe-effect is obtained by measuring the test board via the probe and the antenna.
Abstract:
A method for predicting and debugging electromagnetic interference (EMI) characteristics of an integrated circuit (IC) system includes the following steps: selecting a frequency domain range according to transformed raw data of the IC system to generate a blocking frequency analysis result, wherein the transformed raw data are transformed by a time-frequency waveform transformation; setting criteria data; comparing the blocking frequency analysis result with the criteria data to generate at least one comparison result; and generating a pass analysis report when a processing unit determines that each comparison result is passed; otherwise, executing an EMI design time-frequency analysis.
Abstract:
A circuit board includes a signal line plane and a reference plane. The signal line plane has at least a first transmission line and a second transmission line formed thereon. The reference plane has a conductive region and at least a non-conductive region. The first transmission line and the second transmission line overlap the conductive region in a thickness direction of the circuit board. The non-conductive region includes at least a first part and a second part connected to the first part, where the second part is positioned between the projection of the first transmission line on the reference plane and the projection of the second transmission line on the reference plane, and has no intersection with at least one of the projection of the first transmission line and the projection of the second transmission line.
Abstract:
The semiconductor structure of the present invention comprises: a P-well, a first N+ diffusion region, a first P+ diffusion region, a second P+ diffusion region, a first N-well, and a second N+ diffusion region. The semiconductor structure of the present invention comprises: a N-well, a first P+ diffusion region, a first N+ diffusion region, a second N+ diffusion region, a first P-well, and a second P+ diffusion region. Compared with the conventional semiconductor structure for realizing an ESD protection circuit, the semiconductor structure of the present invention requires a smaller area by utilizing the parasitic BJT to have the same ESD protection function. Brief summarized, the semiconductor structure disclosed by the present invention can be utilized for realizing an ESD protection circuit in a smaller area to reduce cost.
Abstract:
A method for predicting and debugging electromagnetic interference (EMI) characteristics of an integrated circuit (IC) system includes the following steps: selecting a frequency domain range according to transformed raw data of the IC system to generate a blocking frequency analysis result, wherein the transformed raw data are transformed by a time-frequency waveform transformation; setting criteria data; comparing the blocking frequency analysis result with the criteria data to generate at least one comparison result; and generating a pass analysis report when a processing unit determines that each comparison result is passed; otherwise, executing an EMI design time-frequency analysis.
Abstract:
A transient detection circuit coupled between a first power line and a second power line and including a first control unit, a setting unit, and a voltage regulation unit. The first control unit generates a first control signal. The first control signal is at a first level when an electrostatic discharge (ESD) event occurs. The first control signal is at a second level when the ESD event does not occur. The setting unit sets a first node. The first node is set at the second level when the first control signal is at the first level. The voltage regulation unit regulates the first node. The voltage regulation unit regulates the level of the first node at the second level when the first control signal is at the second level.
Abstract:
A transient detection circuit including a detecting unit, a setting unit, and a memory unit. The transient detection circuit provides an information signal to an external instrument when an electrostatic discharge (ESD) event occurs. The detecting unit is coupled between a first power line and a second power line for detecting the ESD event. The setting unit sets a level of a first node according to the detection result. The memory unit controls the information signal according to the level of the first node. The information signal is at a first level when the ESD event occurs in the first power line.
Abstract:
An ESD protection circuit design incorporating a single, or a plurality of, parallel inductor and capacitor, also known as LC tank(s), to avoid power loss by parasitic capacitance in ESD circuits. The first design described incorporates a LC tank structure. The second includes two LC tank structures. These structures can be expanded to form ESD protection circuit structures stacked with n-stages LC tanks. The last design described is ESD protection circuits formed by stacking the first design. These designs can avoid power gain loss from parasitic capacitance of ESD, because the parameters of LC tank can be designed to resonant at a desired operating frequency. Each of these designs can be altered slightly to create variant designs with equal identical ESD protection capabilities.
Abstract:
A self-reset transient-to-digital convertor which includes at least one transient detection circuit is disclosed. The transient detection circuit, coupled between a first power line and a second power line, includes at least one voltage drop unit, a current amplifier unit, and a time control unit. When an ESD event occurs, the voltage drop unit is conducted to pass through an ESD current. The current amplifier unit, coupled between the voltage drop unit and the first power line, is conducted by the ESD current to set the level of a first node. The time control unit, coupled between the first node and the second power line, is configured to gradually drain the ESD current away. Wherein, each of the transient detection circuit generates a digital code according to the level of the first node.
Abstract:
A noise filter circuit for an IC is provided. The noise filter circuit comprises a decoupling unit coupled to a power pad of the IC and a current amplifier circuit coupled to the decoupling unit and the power pad of the IC. The decoupling unit generates a first current in response to a transient voltage being on the power pad of the IC. The current amplifier circuit drains a second current from the power pad of the IC according to the first current.