Genus Hydrogenophilus Bacterium Transformant

    公开(公告)号:US20210108215A1

    公开(公告)日:2021-04-15

    申请号:US17047757

    申请日:2018-06-25

    Abstract: A transformant obtained by introducing a DNA of (a1), (a2), or (a3) below, and (b) an alcohol dehydrogenase gene, into a bacterium of the genus Hydrogenophilus, can efficiently produce isobutanol utilizing carbon dioxide as a sole carbon source. (a1) DNA which consists of a base sequence of SEQ ID NO: 1; (a2) DNA which consists of a base sequence having 90% or more identity with SEQ ID NO: 1, the DNA encoding a polypeptide having 2-keto-acid decarboxylase activity; (a3) DNA which hybridizes with a DNA consisting of a base sequence complementary to SEQ ID NO: 1 under stringent conditions, and which encodes a polypeptide having 2-keto-acid decarboxylase activity.

    A Recombinant of Hydrogenophilus Bacterium Producing Lactic Acid

    公开(公告)号:US20220290109A1

    公开(公告)日:2022-09-15

    申请号:US17631066

    申请日:2019-08-09

    Abstract: When lactate dehydrogenase gene and/or malate/lactate dehydrogenase gene is/are introduced into a Hydrogenophilus bacterium as well as one or more of the three lactic acid-utilizing enzyme genes on the genome of the Hydrogenophilus bacterium is/are disrupted, lactic acid-producing ability is remarkably increased. The inventors of the present invention have identified the three lactic acid-utilizing enzyme genes of the Hydrogenophilus bacterium. When lactate permease gene is further introduced into the recombinant, lactic acid-producing ability is further increased. The recombinant of the present invention effectively produces lactic acid using carbon dioxide as a sole carbon source, and therefore, it is able to efficiently produce the material of biodegradable plastics, while solving global warming caused by increased emissions of carbon dioxide.

    Lactic Acid-Producing Hydrogenophilus Bacterium Transformant

    公开(公告)号:US20210403928A1

    公开(公告)日:2021-12-30

    申请号:US17292867

    申请日:2018-11-30

    Abstract: A transformant obtained by introducing (a) a lactate dehydrogenase gene and/or (b) a malate/lactate dehydrogenase gene into a Hydrogenophilus bacterium efficiently produces lactic acid through use of carbon dioxide as a sole carbon source. Parageobacillus thermoglucosidasius ldh gene, Geobacillus kaustophilus ldh gene and Thermus thermophilus ldh gene of lactate dehydrogenases, and Thermus thermophilus mldh gene and Meiothermus ruber mldh-1 and mldh-2 genes of malate/lactate dehydrogenases are preferable in that they have good lactic acid production efficiency.

Patent Agency Ranking