Abstract:
In some embodiments, a power supply may include a power factor correction (PFC) circuit to receive an input voltage signal and to provide an intermediate PFC output voltage signal, the PFC circuit including at least a first PFC stage and a second PFC stage, a converter circuit to convert the intermediate PFC output voltage signal to an output voltage signal, the converter circuit including at least a first converter stage and a second converter stage, and a control circuit to monitor at least one of the input voltage signal, the intermediate PFC output voltage signal, and the output voltage signal and to switch between respective pairs of the first PFC stage and first converter stage and the second PFC stage and the second converter stage based on the monitored signals. For example, the first PFC stage and first converter stage may provide relatively more efficient performance over a first output power range and the second PFC stage and second converter stage may provide relatively more efficient performance over a second output power range. Other embodiments are disclosed and claimed.
Abstract:
In some embodiments, the arrangement includes a sense element to convey a current from a source to a load and a compensation element located proximate to the sense element. The compensation element has a resistance that changes proportional to a change in temperature of the sense element. In several embodiments, the arrangement further includes an operational amplifier having a first input connected to the sense element, a second input connected to the compensation element and an output that provides an output signal that biases a current through the compensation element in response to a voltage across the sense element. In such embodiments, the bias current provides an output signal proportional to the conveyed current and the compensation element provides temperature compensation for the output signal. Other embodiments are also disclosed.
Abstract:
In accordance with the present disclosure current sensing methods, apparatuses and arrangements are disclosed. The arrangement can include a sense element to convey a current from a source to a load and a compensation element can be located proximate to the sense element. The compensation element can have a resistance that changes proportional to a change in temperature of the sense element. The arrangement can further include an operational amplifier having a first input connected to the sense element, a second input connected to the compensation element and an output that provides an output signal that biases a current through the compensation element in response to a voltage across the sense element. The bias current can provide an output signal proportional to the conveyed current and the compensation element can provide temperature compensation for the output signal.
Abstract:
A power supply system includes at least a first power supply module and at least one redundant power supply module. The at least one power supply module supplies power to an output terminal. The at least one redundant power supply module operates in a first state and in a second state. In the first state the second power supply module supplies power to the output terminal. In the second state the second power supply module provides standby power and operates in a burst mode (for example, such as a discontinuous conduction mode).
Abstract:
A power supply system includes at least one power supply module and at least one redundant power supply module. A power supply module may include a charging resistor in parallel with an OR-ing device to keep all filter capacitors charged as long as at least one power supply module remains operational. This may avoid current spikes at turn on and may enable the redundant module to turn on without using soft start.
Abstract:
A power supply system includes at least one power supply module and at least one redundant power supply module. A power supply module may include a charging resistor in parallel with an OR-ing device to keep all filter capacitors charged as long as at least one power supply module remains operational. This may avoid current spikes at turn on and may enable the redundant module to turn on without using soft start.
Abstract:
One arrangement includes a sense element to convey a current from a source to a load and a compensation element located proximate to the sense element. The compensation element having a resistance that changes proportional to a change in temperature of the sense element. The arrangement further includes an operational amplifier having a first input connected to the sense element, a second input connected to the compensation element and an output that provides an output signal that biases a current through the compensation element in response to a voltage across the sense element. The bias current provides an output signal proportional to the conveyed current and the compensation element provides temperature compensation for the output signal. Other embodiments are also disclosed.
Abstract:
A power supply system includes at least one power supply module and at least one redundant power supply module. A power supply module may include a charging resistor in parallel with an OR-ing device to keep all filter capacitors charged as long as at least one power supply module remains operational. This may avoid current spikes at turn on and may enable the redundant module to turn on without using soft start.
Abstract:
A power supply system includes at least a first power supply module and at least one redundant power supply module. The at least one power supply module supplies power to an output terminal. The at least one redundant power supply module operates in a first state and in a second state. In the first state the second power supply module supplies power to the output terminal. In the second state the second power supply module provides standby power and operates in a burst mode (for example, such as a discontinuous conduction mode).
Abstract:
In some embodiments, a power supply may include a power factor correction (PFC) circuit to receive an input voltage signal and to provide an intermediate PFC output voltage signal, the PFC circuit including at least a first PFC stage and a second PFC stage, a converter circuit to convert the intermediate PFC output voltage signal to an output voltage signal, the converter circuit including at least a first converter stage and a second converter stage, and a control circuit to monitor at least one of the input voltage signal, the intermediate PFC output voltage signal, and the output voltage signal and to switch between respective pairs of the first PFC stage and first converter stage and the second PFC stage and the second converter stage based on the monitored signals. For example, the first PFC stage and first converter stage may provide relatively more efficient performance over a first output power range and the second PFC stage and second converter stage may provide relatively more efficient performance over a second output power range. Other embodiments are disclosed and claimed.