Abstract:
Isotropic magnetic alloy powder having an intrinsic magnetic induction of at least two third of its magnetic remanence and method for making same are provided. The powder is made from an alloy having a composition comprising, by weight percentage, approximately 15 to 35 percent of one or more rare earth metals, approximately 0.5 to 4.5 percent of boron, and approximately 0 to 20 percent of cobalt, balanced with iron. The alloy powder is made by a process wherein an amount of the alloy is melt and spun in an inert environment, preferably at a distance between an orifice and a wheel being less than one and one half inches, into ribbons, followed by crushing the ribbons into powder and annealing the powder.
Abstract:
A method is disclosed for producing a rapidly solidified, fine grained, magnetically anisotropic powder of the RE-Fe-B type. The rapidly solidified material is optimally quenched or slightly overquenched and is subjected to a hydrogen absorption-hydrogen desorption process that produces a fine grained material containing the essential magnetic phase RE.sub.2 TM.sub.14 B and an intergranular phase and is magnetically anisotropic.
Abstract:
New cobalt base alloys containing chromium and carbon are disclosed. The alloys are subjected to rapid solidification processing (RSP) technique which produces cooling rates between 10.sup.5 to 10.sup.7 .degree. C./sec. The as-quenched ribbon, powder etc. consists predominantly of amorphous phase. The amorphous phase is subjected to suitable heat treatments so as to produce a transformation to a microcrystalline alloy which includes carbides; this heat treated alloy exhibits superior mechanical properties for numerous industrial applications.
Abstract:
New iron base alloys containing aluminum and boron are disclosed. The alloys are subjected to a rapid solidification processing (RSP) technique which produces cooling rates between .about.10.sup.5 to 10.sup.7 .degree. C./sec. The as-quenched ribbon or powder, etc consists primarily of a metastable crystalline solid solution phase. The metastable crystalline phases are subjected to suitable heat treatments so as to produce a transformation to a stable multiphase microstructure which includes borides. The heat treated alloy exhibits superior mechanical properties with good corrosion and oxidation resistance.
Abstract:
A magnet rotor assembly comprises a magnet sleeve held on a rotor shaft by a rigid adhesive layer that includes at least one axial wedge shape corresponding to an axial irregularity on at least one of the surfaces bonded by the adhesive layer. Improved crush strength in the magnet sleeve and in other bonded metal parts, both initially and after exposure to high temperatures is accomplished by impregnating the parts with a curable resin.
Abstract:
A rare earth-iron-boron magnetic composition containing a rare earth fluoride compound in a sufficient amount to reduce or eliminate the formation of rare earth hydroxide and a method of making the same. The reduction or elimination of the formation of rare earth hydroxide substantially eliminates or significantly reduces eruptions in bonded magnets caused by volumetric expansion defects.
Abstract:
A method is provided for forming high coercivity permanent magnets from a rare earth-iron-boron metal, wherein the permanent magnets exhibit high intrinsic coercivity comparable to that of the rare earth-iron-boron metal alloy when formed by machining and appropriately heat treating the metal alloy in air at a temperature greater than the Curie temperature of the material, prior to or after the machining operation. As a result, high coercivity permanent magnets can be selectively sized and shaped to satisfy specific design requirements, without requiring that a punch and die be specially designed and manufactured to produce the permanent magnets. The heat treatment method is able to promote machinability of the metal alloy without substantially causing a loss in magnetic properties. Alternatively, the heat treatment method can be employed to substantially restore the magnetic properties of a permanent magnet which were previously reduced by conventional annealing practices.
Abstract:
New nickel and cobalt base alloys containing tungsten and carbon are disclosed. The alloys are subjected to rapid solidification processing (RSP) technique which produces cooling rates between 10.sup.5 .degree. to 10.sup.7 .degree. C./sec. The as-quenched ribbon, powder, etc. consists predominantly of amorphous phase. The amorphous phase is subjected to suitable heat treatments so as to produce a transformation to a microcrystalline alloy which includes carbides; this heat treated alloy exhibits high hardness combined with toughness for many applications wherein superhard materials are required.
Abstract:
New iron rich metal alloys containing aluminum and copper along with specific amounts of boron are disclosed. The alloys are subjected to rapid solidification processing (RSP) technique which produces cooling rates between .about.10.sup.5 to 10.sup.7 .degree.C./sec. The as-quenched ribbon, powder etc. consists primarily of a metastable crystalline solid solution phase. The metastable crystalline phases are subjected to suitable heat treatments so as to produce a transformation to a stable multiphase microstructure which includes borides; this heat treated alloy exhibits superior mechanical properties with good corrosion and/or oxidation resistance for numerous engineering applications.
Abstract:
New cobalt base alloys containing chromium and carbon are disclosed. The alloys are subjected to rapid solidification processing (RSP) technique which produces cooling rates between 10.sup.5 to 10.sup.7 oC/sec. The as-quenched ribbon, powder etc. consists predominantly of amorphous phase. The amorphous phase is subjected to suitable heat treatments so as to produce a transformation to a microcrystalline alloy which includes carbides; this heat treated alloy exhibits superior mechanical properties for numerous industrial applications.