摘要:
An exemplary printable composition of a liquid or gel suspension of diodes comprises a plurality of diodes, a first solvent and/or a viscosity modifier. An exemplary diode comprises: a light emitting or absorbing region having a diameter between about 20 and 30 microns and a height between about 2.5 to 7 microns; a first terminal coupled to the light emitting region on a first side, the first terminal having a height between about 1 to 6 microns; and a second terminal coupled to the light emitting region on a second side opposite the first side, the second terminal having a height between about 1 to 6 microns.
摘要:
Representative embodiments provide a liquid or gel separator utilized to separate and space apart first and second conductors or electrodes of an energy storage device, such as a battery or a supercapacitor. A representative liquid or gel separator comprises a plurality of particles, typically having a size (in any dimension) between about 0.5 to about 50 microns; a first, ionic liquid electrolyte; and a polymer. In another representative embodiment, the plurality of particles comprise diatoms, diatomaceous frustules, and/or diatomaceous fragments or remains. Another representative embodiment further comprises a second electrolyte different from the first electrolyte; the plurality of particles are comprised of silicate glass; the first and second electrolytes comprise zinc tetrafluoroborate salt in 1-ethyl-3-methylimidalzolium tetrafluoroborate ionic liquid; and the polymer comprises polyvinyl alcohol (“PVA”) or polyvinylidene fluoride (“PVFD”). Additional components, such as additional electrolytes and solvents, may also be included.
摘要:
The present invention provides a method of manufacturing an electronic apparatus, such as a lighting device having light emitting diodes (LEDs) or a power generating device having photovoltaic diodes. The exemplary method includes depositing a first conductive medium within a plurality of channels of a base to form a plurality of first conductors; depositing within the plurality of channels a plurality of semiconductor substrate particles suspended in a carrier medium; forming an ohmic contact between each semiconductor substrate particle and a first conductor; converting the semiconductor substrate particles into a plurality of semiconductor diodes; depositing a second conductive medium to form a plurality of second conductors coupled to the plurality of semiconductor diodes; and depositing or attaching a plurality of lenses suspended in a first polymer over the plurality of diodes. In various embodiments, the depositing, forming, coupling and converting steps are performed by or through a printing process.
摘要:
An exemplary printable composition of a liquid or gel suspension of diodes comprises a plurality of diodes, a first solvent and/or a viscosity modifier. An exemplary method of making a liquid or gel suspension of diodes comprises: adding a viscosity modifier to a plurality of diodes in a first solvent; and mixing the plurality of diodes, the first solvent and the viscosity modifier to form the liquid or gel suspension of the plurality of diodes. Various exemplary diodes have a lateral dimension between about 10 to 50 microns and about 5 to 25 microns in height. Other embodiments may also include a plurality of substantially chemically inert particles having a range of sizes between about 10 to about 50 microns.
摘要:
An exemplary power regulator apparatus provides power for illumination of a display object, such as a merchandise package or container, which has a light emitting apparatus comprising a secondary inductor and an illumination source. A support structure, such as a point of purchase display, typically contains or supports one or more power regulators and display objects. The power regulator comprises a controller and a primary inductor, and the controller is adapted to provide a voltage or current to the primary inductor to generate a primary inductor voltage. The controller may also comprise a plurality of switches and a memory adapted to store values for switching frequency or switch on-time durations or pulse widths. The illumination source emits visible light when the power regulator is in an on state and when the secondary inductor is within a predetermined distance of the primary inductor.
摘要:
The present invention provides an electronic apparatus, such as a lighting device comprised of light emitting diodes (LEDs) or a power generating apparatus comprising photovoltaic diodes, which may be created through a printing process, using a semiconductor or other substrate particle ink or suspension and using a lens particle ink or suspension. An exemplary apparatus comprises a base; at least one first conductor; a plurality of substantially spherical or optically resonant diodes coupled to the at least one first conductor; at least one second conductor coupled to the plurality of diodes; and a plurality of substantially spherical lenses suspended in a polymer attached or deposited over the diodes. The lenses and the suspending polymer have different indices of refraction. In some embodiments, the lenses and diodes have a ratio of mean diameters or lengths between about 10:1 and 2:1. The diodes may be LEDs or photovoltaic diodes, and in some embodiments, have a junction formed at least partially as a hemispherical shell or cap.
摘要:
An exemplary system comprises a power regulator and an emitting apparatus. The emitting apparatus is typically attached to or integrated with a display object, such as a merchandise package or container. A support structure, such as a point of purchase display, typically contains or supports one or more power regulators and display objects. The power regulator comprises a controller and a primary inductor, and the controller is adapted to provide a voltage or current to the primary inductor to generate a first primary inductor voltage. The emitting apparatus comprises an illumination source and a secondary inductor coupled to the illumination source. The illumination source is adapted to emit visible light when the power regulator is in an on state and when the secondary inductor is within a predetermined distance of the primary inductor. In exemplary embodiments, the first and second inductors are substantially planar.
摘要:
An exemplary printable composition of a liquid or gel suspension of diodes comprises a plurality of diodes, a first solvent and/or a viscosity modifier. An exemplary apparatus comprises: a plurality of diodes; at least a trace amount of a first solvent; and a polymeric or resin film at least partially surrounding each diode of the plurality of diodes. Various exemplary diodes have a lateral dimension between about 10 to 50 microns and about 5 to 25 microns in height. Other embodiments may also include a plurality of substantially chemically inert particles having a range of sizes between about 10 to about 50 microns.
摘要:
The various embodiments of the invention provide an addressable or a static emissive display comprising a plurality of layers, including a first substrate layer, wherein each succeeding layer is formed by printing or coating the layer over preceding layers. Exemplary substrates include paper, plastic, rubber, fabric, glass, ceramic, or any other insulator or semiconductor. In an exemplary embodiment, the display includes a first conductive layer attached to the substrate and forming a first plurality of conductors; various dielectric layers; an emissive layer; a second, transmissive conductive layer forming a second plurality of conductors; a third conductive layer included in the second plurality of conductors and having a comparatively lower impedance; and optional color and masking layers.
摘要:
An exemplary printable composition of a liquid or gel suspension of diodes comprises a plurality of diodes, a first solvent and/or a viscosity modifier. An exemplary method of making a liquid or gel suspension of diodes comprises: adding a viscosity modifier to a plurality of diodes in a first solvent; and mixing the plurality of diodes, the first solvent and the viscosity modifier to form the liquid or gel suspension of the plurality of diodes. Various exemplary diodes have a lateral dimension between about 10 to 50 microns and about 5 to 25 microns in height. Other embodiments may also include a plurality of substantially chemically inert particles having a range of sizes between about 10 to about 50 microns.