Abstract:
According to example embodiments of the invention, a microscale testing stage comprises a frame having first and second opposing ends and first and second side beams, at least one deformable force sensor beam, a first longitudinal beam having a free end, a second longitudinal beam having a facing free end, a support structure, and a pair of slots disposed at each of the free ends. In certain embodiments, a separately fabricated microscale or nanoscale specimen comprises a central gauge length portion of a material to be tested, and first and second hinges providing a self-aligning mechanism for uniaxial loading. In other embodiments, a layer of a conductive material defines first and second conductive paths and an open circuit that can be closed by the specimen across the gap. In other embodiments, the stage is formed of a high melting temperature material.
Abstract:
According to example embodiments of the invention, a microscale testing stage comprises a frame having first and second opposing ends and first and second side beams, at least one deformable force sensor beam, a first longitudinal beam having a free end, a second longitudinal beam having a facing free end, a support structure, and a pair of slots disposed at each of the free ends. In certain embodiments, a separately fabricated microscale or nanoscale specimen comprises a central gauge length portion of a material to be tested, and first and second hinges providing a self-aligning mechanism for uniaxial loading. In other embodiments, a layer of a conductive material defines first and second conductive paths and an open circuit that can be closed by the specimen across the gap. In other embodiments, the stage is formed of a high melting temperature material.
Abstract:
A method and device for electro-thermo-mechanical tensile testing of wires is disclosed. The device includes a sample frame having upper and lower parts, with the upper part coupled to the lower part through a plurality of sacrificial supports, the upper and lower parts each having an electrical contact pad. The upper and lower parts are electrically non-conductive. The device also includes a wire sample with tracking beads, the wire sample affixed to the upper and lower parts such that the electrical contact pads of the upper and lower parts are communicatively coupled through the wire sample. The device also includes a piezo actuator coupled to the upper part, a weight coupled to the lower part, a power supply configured to pass a current through the wire sample, an electronic balance beneath the weight, and a digital camera pointed at the tracking beads of the wire sample.
Abstract:
A composite wire material may comprise a core wire comprising copper (Cu). The core wire material may comprise a first layer on a circumferential surface of the core wire, where the first layer comprises graphene. The composite wire material may comprise a second layer on a circumferential surface of the first layer, where the second layer comprises nickel (Ni).