Abstract:
The invention is for a VTOL (vertical take-off and landing) rotorcraft with the annular contra-rotating rotary wings and auxiliary propulsor. The rotary wing of the annular contra-rotating rotary wings is driven by a plurality of tangential forces applied at multiple locations of the inner stator hub. The annular contra-rotating rotary wings can be shrouded for the improvement of propulsive efficiency, reduction of noise and protection of the rotary wing. The fuselage is mounted along the center axis of the annular contra-rotating rotary wings to be outside of the thrust slipstream. The auxiliary propulsor includes a quad independent pusher propeller to propel the rotorcraft to reach faster forward speed.
Abstract:
A variable-sweep wing VTOL (vertical take-off and landing) aerial vehicle with distributed propulsion adapted for VTOL flight and horizontal flight includes a fuselage, a pair of symmetrical swiveling canards extending outward from forward portion of the fuselage, a pair of first symmetrical wings extending outward from the upper-rear portion of the fuselage and a pair of second symmetrical wings extending outward from the lower-rear portion of the fuselage. The first and second wings are spaced apart longitudinally and vertically. The pylon joins the first wing and second wing at the tip to form the box-wing. The wings can transition between VTOL mode or airplane mode. The wings are mounted with rotors for propulsion. Moreover, at the trailing edge of the wings, the blown flap work as blown lift system for both VTOL flight or STOL flight. Finally, the fuselage mounted pusher rotor provides propulsive thrust for horizontal flight.
Abstract:
A chemoenzymatic method for the preparation of a core-fucoslyated glycoprotein or glycopeptide, including (a) providing an acceptor selected from the group consisting of a fucosylated GlcNAc-protein and fucosylated GlcNAc-peptide; and (b) reacting the acceptor with a donor substrate including an activated oligosaccharide moiety, in the presence of an endoglycosidase (ENGase) selected from Endo;F1, Endo-F2, Endo-F3, Endo-D and related glycosynthase mutants to transfer the oligosaccharide moiety to the acceptor and yield the structure defined core-fucosylated glycoprotein or glycopeptide. The donor substrate includes, in a specific implementation, a synthetic oligosaccharide oxazoline. A related method of fucosylated glycoprotein or fucosylated glycopeptide remodeling with a predetermined natural N-glycan or a tailor-made oligosaccharide moiety, and a method of remodeling an antibody to include a predetermined sugar chain to replace a heterogeneous sugar chain, are also described.
Abstract:
An apparatus for substrate metallization from electrolyte is provided. The apparatus comprises: an immersion cell containing metal salt electrolyte; at least one electrode connecting to at least one power supply; an electrically conductive substrate holder holding at least one substrate to expose a conductive side of the substrate to face the at least one electrode; an oscillating actuator for oscillating the substrate holder with an amplitude and a frequency; at least one ultrasonic device with an operating frequency and an intensity, disposed in the metallization apparatus; at least one ultrasonic power generator connecting to the ultrasonic device; at least one inlet for metal slat electrolyte feeding; and at least one outlet for metal salt electrolyte draining.
Abstract:
According to an aspect of an embodiment, a method of spectrum defragmentation in an optical network may include assigning an optical signal within an optical network to a first frequency slot that spans a first portion of an optical spectrum of the optical network. The method may also include constructing a frequency slot dependency map based on the assignation of the optical signal to the frequency slot. The method may also include reassigning, as a result of an optical signal departure event, the optical signal to a second frequency slot based on the frequency slot dependency map. The second frequency slot may span a second portion of the optical spectrum of the optical network.
Abstract:
An optical network for reassigning a carrier wavelength of an optical signal may include first and second optical nodes. The first optical node may be configured to transmit an optical signal along an optical path. The first optical node may also be configured to tune a carrier wavelength of the optical signal from a first wavelength to a second wavelength, according to a continuous function, to reassign the carrier wavelength of the optical signal. The second optical node may be configured to receive the optical signal and may include a feedback loop configured to adjust a wavelength of a reference optical signal to approximate the carrier wavelength of the optical signal.
Abstract:
A dual-channel hot standby system and a method for carrying out dual-channel hot standby, the system comprises a hot standby status management layer including two hot standby management units, an application processing layer including two application processors, and a data communication layer including two communicators; the hot standby status management layer is used for controlling the setting and switching between a active status and a standby status of the two application processors, monitoring the working status of the data communication layer, and carrying out synchronization of the control cycles for the two channels of the system; wherein one of the hot standby management units controls one of the application processors, and together constitute a channel of the system therewith; the data communication layer is used for receiving data from outside, and forwarding the data to the application processing layer. The present invention avoids the occurrence of “dual-channel-active” or “dual-channel-standby” status; ensures synchronization of the control cycles of two channels; reduces the time of the system for responding to breakdowns; meets the real-time requirements; enhances the reliability and availability of the system; and ensures a seamless switching between active and standby statuses.
Abstract:
The present invention provides a modeling method of a SPICE model series of a Silicon On Insulator (SOI) Field Effect Transistor (FET), where auxiliary devices are designed and fabricated, electrical property data is measured, intermediate data is obtained, model parameters are extracted based on the intermediate data, a SPICE model of an SOI FET of a floating structure is established, model parameters are extracted by using the intermediate data and data of the auxiliary devices, a macro model is complied, and a SPICE model of an SOI FET of a body leading-out structure is established. The modeling method provided in the present invention takes an influence of a parasitic transistor of a leading-out part in a body leading-out structure into consideration, and model series established by using the method can more accurately reflect actual operating conditions and electrical properties of the SOI FET of a body leading-out structure and the SOI FET of a floating structure, thereby improving fitting effects of the models.
Abstract:
A method may include constructing an auxiliary graph for a network comprising a plurality of network elements, the network elements having an Internet Protocol layer, a lower layer, and a wavelength layer, the auxiliary graph including a plurality of directed edges, the plurality of directed edges indicative of connectivity of components of the plurality of network elements. The method may further include: (i) deleting directed edges from the auxiliary graph whose available bandwidth is lower than the required bandwidth of a selected demand; (ii) finding a path for the demand on the auxiliary graph via remaining directed edges; (iii) deleting at least one directed edge of the auxiliary graph on the wavelength layer along the path; (iv) adding lower layer lightpath edges to the auxiliary graph for a lower layer lightpath for the path; and (v) converting lower layer lightpaths to Internet Protocol lightpaths if a conversion condition is satisfied.