Abstract:
Embodiments of the invention include a method and software for pre-allocating bandwidth for time-sensitive data such as voice data, for allocating some of the pre-allocated bandwidth to calls, and for timely delivery of frames that include time-sensitive data such as voice data in both the uplink and downlink direction for calls between an access point, e.g., a quality-assured access point (Q-AP) and one or more of its client stations.
Abstract:
A method for providing a handoff in a network environment is provided that includes a mobile station operable to conduct a call. The mobile station is further operable to initiate a call leg autonomously such that a generic transfer function is invoked. The mobile station leverages the generic transfer function in order to execute a handoff for the mobile station.
Abstract:
A technique whereby a subscriber of a multiple access communication network such as a cellular communication system is permitted to make a reservation to guarantee availability of a shared physical communication resource, such as a cellular radio telephone traffic channel, at an appointed date, time and location. The reservation is made in advance by the subscriber requesting the network to mark a requested resource for the subscribers exclusive use during the requested period of time. The reservation may be made any number of ways, such as through the subscriber terminal itself, by making arrangements themselves or on their behalf by others at a conference call center, through Web servers connected through the Internet, or by other means. Whenever a resource of the requested type is available during the requested period, the controlling stations in the network reserve that resource for that subscribers' exclusive use as the appointed time draws near. Thus, when that subscriber attempts to originate or is expected to receive a call at the appointed time, the network is able to grant the on-hold resource to that subscriber. After the reserved period of time elapses, the network releases the reserved resource, and applies normal allocation rules to it.
Abstract:
A method for providing a handoff in a network environment is provided that includes a mobile station operable to conduct a call. The mobile station is further operable to initiate a call leg autonomously such that a generic transfer function is invoked. The mobile station leverages the generic transfer function in order to execute a handoff for the mobile station.
Abstract:
Embodiments of the invention include a method and software for pre-allocating bandwidth for time-sensitive data such as voice data, for allocating some of the pre-allocated bandwidth to calls, and for timely delivery of frames that include time-sensitive data such as voice data in both the uplink and downlink direction for calls between an access point, e.g., a quality-assured access point (Q-AP) and one or more of its client stations.
Abstract:
A node for routing of calls in a network has an interface coupled to the network and at least one processor operable to route a packet-based call to a telephony destination in accordance with a protocol that includes a set of attributes that describe packet-network routing characteristics of one or more Internet Protocol (IP)-IP gateway devices in the network. The attributes are used by the at least one processor to specify a call route through an IP-IP gateway device for the packet-based call. The set of attributes include a first attribute that identifies a total administratively provisioned bandwidth capacity available on a given call route to accommodate application traffic, and a second attribute that identifies a current bandwidth that is available on the given call route to accommodate the application traffic at a given point in time. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. 37 CFR 1.72(b).
Abstract:
An access point of a wireless network broadcasts directory information including a schedule on a first broadcast channel about media programs being broadcast on other channels by the access point. The broadcast on the first channel provides for sleep-mode clients to receive the broadcast. A client receives the schedule, and in order to receive a particular media program at a scheduled time switches to a particular one of the other channels and to wakeup state to receive a particular program.
Abstract:
A method in one embodiment includes allocating, by a node of a network, a flow label attribute identifying a media flow associated with a Session Description Protocol (SDP) media session. The media flow is between a sender and receiver nodes over a media transmission path of the network. The node further specifying a flow state attribute to generate media flow information and communicating the flow label and the flow state attribute to downstream nodes in the media transmission path. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure.
Abstract:
In one embodiment, a method and system for enabling determination of a physical location of a Voice Over Internet Protocol (VoIP) endpoint device utilized to originate an emergency call are described. A network location associated with the VoIP endpoint device is automatically detected. The VoIP endpoint device is coupled with a VoIP network via a port of a network device (e.g., a wireline or a wireless network device). The network location includes an identity of the network device and an identity of the port. The network location is saved and upon initiation of an emergency call, the VoIP endpoint device forwards the network location to a device capable of converting the network location to a physical location.
Abstract:
A system for aggregating packet in a Medium Access control layer of a router to improve effective bandwidth of transmission over a network. The system begins by receiving Medium Access Control Service Data Unit packets in a Medium Access Control unit of a router wherein each of the Medium Access Control Service Data Unit packets are addressed to different receivers. The Medium Access Control Service Data Unit packets are then aggregated into one Medium Access Control Protocol Data Unit packet. The Medium Access Control Protocol Data Unit packet is then transmitted to said Physical layer of said router for transmission.