Abstract:
Optimization of optical parametric models for structural analysis using optical critical dimension metrology is described. A method includes determining a first optical model fit for a parameter of a structure. The first optical model fit is based on a domain of quantities for a first model of the structure. A first near optical field response is determined for a first quantity of the domain of quantities and a second near optical field response is determined for a second, different quantity of the domain of quantities. The first and second near optical field responses are compared to locate a common region of high optical field intensity for the parameter of the structure. The first model of the structure is modified to provide a second, different model of the structure. A second, different optical model fit is determined for the parameter of the structure based on the second model of the structure.
Abstract:
The present invention is directed towards methods of culturing non-keratinocyte epithelial cells, with the methods comprising culturing non-keratinocyte epithelial cells in the presence of feeder cells and a calcium-containing medium while inhibiting the activity of Rho kinase (ROCK) in the feeder cell, the non-keratinocyte epithelial cells or both during culturing.
Abstract:
An electromagnetic shielding structure that includes a conductive structure surrounding and accommodating a circuit or a circuit device arranged on a substrate. At least one feed through device is associated with the conductive structure and provides signals to the circuit or circuit device. The method includes forming a shielding structure so that the shielding structure at least one of is at least partially arranged within the substrate and surrounds the circuit or circuit device and associating at least one feed through device with the shielding structure.
Abstract:
A semiconductor chip integrating a transceiver, an antenna, and a receiver is provided. The transceiver is located on a front side of a semiconductor substrate. A through substrate via provides electrical connection between the transceiver and the receiver located on a backside of the semiconductor substrate. The antenna connected to the transceiver is located in a dielectric layer located on the front side of the substrate. The separation between the reflector plate and the antenna is about the quarter wavelength of millimeter waves, which enhances radiation efficiency of the antenna. An array of through substrate dielectric vias may be employed to reduce the effective dielectric constant of the material between the antenna and the reflector plate, thereby reducing the wavelength of the millimeter wave and enhance the radiation efficiency. A design structure for designing, manufacturing, or testing a design for such a semiconductor chip is also provided.
Abstract:
A method for forming a lateral passive device including a dual annular electrode is disclosed. The annular electrodes formed from the method include an anode and a cathode. The annular electrodes allow anode and cathode series resistances to be optimized to the lowest values at a fixed device area. In addition, the parasitic capacitance to a bottom plate (substrate) is greatly reduced.
Abstract:
A structure includes a substrate comprising a region having a circuit or device which is sensitive to electrical noise. Additionally, the structure includes a first isolation structure extending through an entire thickness of the substrate and surrounding the region and a second isolation structure extending through the entire thickness of the substrate and surrounding the region.
Abstract:
A semiconductor chip integrating a transceiver, an antenna, and a receiver is provided. The transceiver is formed on a front side of a semiconductor substrate. At least one through substrate via provides electrical connection between the transceiver and the backside of the semiconductor substrate. The antenna, which is connected to the transceiver, is formed in a dielectric layer on the front side. The reflector plate is connected to the through substrate via, and is formed on the backside. The separation between the reflector plate and the antenna is about the quarter wavelength of millimeter waves, which enhances radiation efficiency of the antenna. An array of through substrate trenches may be formed and filled with a dielectric material to reduce the effective dielectric constant of the material between the antenna and the reflector plate, thereby reducing the wavelength of the millimeter wave and enhance the radiation efficiency.
Abstract:
A lateral passive device is disclosed including a dual annular electrode. The annular electrodes form an anode and a cathode. The annular electrodes allow anode and cathode series resistances to be optimized to the lowest values at a fixed device area. In addition, the parasitic capacitance to a bottom plate (substrate) is greatly reduced. In one embodiment, a device includes a first annular electrode surrounding a second annular electrode formed on a substrate, and the second annular electrode surrounds an insulator region. A related method is also disclosed.
Abstract:
A design structure for an on-chip high frequency electro-static discharge device is described. In one embodiment, the electro-static discharge device comprises a substrate and multiple metal level layers disposed on the substrate. Each metal level comprises more than one electrode formed therein and more than one via connecting with some of the electrodes in adjacent metal levels. The device further includes a gap formed about one of the metal level layers, wherein the gap is hermetically sealed to provide electro-static discharge protection for the integrated circuit.