Abstract:
A backside illuminated image sensor comprises a photodiode and a first transistor located in a first substrate, wherein the first transistor is electrically coupled to the photodiode. The backside illuminated image sensor further comprises a plurality of logic circuits formed in a second substrate, wherein the second substrate is stacked on the first substrate and the logic circuit are coupled to the first transistor through a plurality of bonding pads.
Abstract:
Methods and apparatus for packaging a backside illuminated (BSI) image sensor or a sensor device with an application specific integrated circuit (ASIC) are disclosed. According to an embodiment, a sensor device may be bonded together face-to-face with an ASIC without using a carrier wafer, where corresponding bond pads of the sensor are aligned with bond pads of the ASIC and bonded together, in a one-to-one fashion. A column of pixels of the sensor may share a bond bad connected by a shared inter-metal line. The bond pads may be of different sizes and configured in different rows to be disjoint from each other. Additional dummy pads may be added to increase the bonding between the sensor and the ASIC.
Abstract:
A method includes forming a MEMS device, forming a bond layer adjacent the MEMS device, and forming a protection layer over the bond layer. The steps of forming the bond layer and the protection layer include in-situ deposition of the bond layer and the protection layer.
Abstract:
Techniques for web application vulnerability scanning are disclosed. In one particular embodiment, the techniques may be realized as a method for web application vulnerability scanning comprising crawling a web application for content associated with the web application, generating a client security policy based on the content associated with the web application, and scanning the web application for vulnerabilities based on the client security policy.
Abstract:
Systems and methods of separating bonded wafers are disclosed. In one embodiment, a system for separating bonded wafers includes a support for the bonded wafers and means for applying a sheer force to the bonded wafers. The system also includes means for applying a vacuum to the bonded wafers.
Abstract:
A regimen for the safe and effective long-term treatment of acne vulgaris entails topically applying onto the affected skin area of a subject afflicted therewith, for a period of time of at least four (4) months, e.g., for at least twelve (12) months and advantageously on a daily basis and preferably once a day, a thus effective amount of a topical medicament containing adapalene and benzoyl peroxide, formulated into a pharmaceutically acceptable medium therefor.
Abstract:
Three dimensional integrated circuit (3DIC) structures and hybrid bonding methods for semiconductor wafers are disclosed. A 3DIC structure includes a first semiconductor device having first conductive pads disposed within a first insulating material on a top surface thereof, the first conductive pads having a first recess on a top surface thereof. The 3DIC structure includes a second semiconductor device having second conductive pads disposed within a second insulating material on a top surface thereof coupled to the first semiconductor device, the second conductive pads having a second recess on a top surface thereof. A sealing layer is disposed between the first conductive pads and the second conductive pads in the first recess and the second recess. The sealing layer bonds the first conductive pads to the second conductive pads. The first insulating material is bonded to the second insulating material.
Abstract:
The present disclosure provide a method of manufacturing a microelectronic device. The method includes forming a bonding pad on a first substrate; forming wiring pads on the first substrate; forming a protection material layer on the first substrate, on sidewalls and top surfaces of the wiring pads, and on sidewalls of the bonding pad, such that a top surface of the bonding pad is at least partially exposed; bonding the first substrate to a second substrate through the bonding pad; opening the second substrate to expose the wiring pads; and removing the protection material layer.
Abstract:
Certain aspects of the present disclosure provide methods and apparatus for generating neural adaptive behavior, which may be based on neuromodulator-mediated meta-plasticity and/or gain control. In this manner, flexible associations between sensory cues and motor actions are generated, which enable an agent to efficiently gather rewards in a changing environment. One example method generally includes receiving one or more input stimuli; processing the received input stimuli to generate an output signal, wherein the processing is modulated with a first neuromodulation signal generated by a gain control unit; controlling the gain control unit to switch between at least two different neural activity modes, wherein at least one of a level or timing of the first neuromodulation signal generated by the gain control unit is determined based on the neural activity modes; and sending the output signal to an output unit.
Abstract:
A method of operating a network node comprising one or more transmit antennas that are associated with a plurality of antenna ports includes transmitting a first user-equipment-(UE-) specific reference signal on a first antenna port and reusing the first UE-specific reference signal to transmit a second UE-specific reference signal on one of the first antenna port and a second antenna port. The second UE-specific reference signal is orthogonal to the first UE-specific reference signal.