Abstract:
Image processing techniques which enable various contrast control, by quantitatively handling a degree of phase enhancement in a contrast control as a post-processing of the image reconstruction. A complex operation is performed on each pixel value of a complex image obtained by an MRI, thereby generating an image with desired contrast. Intensity is controlled by increasing or decreasing the argument of the pixel value of each pixel by a constant amount, and the degree of phase enhancement is controlled by multiplying the phase (argument) of each pixel by a constant.
Abstract:
A magnetic resonance imaging apparatus is provided, which is capable of reducing SAR while maintaining S/N ratio and image contrast in a GrE-type pulse sequence, regardless of whether a synchronous imaging is performed or not.The present invention controls a flip angle as to each measurement set 409 that is obtained by division according to the size of phase encoding and a body motion cycle of a subject in the GrE-type pulse sequence. In a set 501 which measures echoes with phase encoding having a minimum absolute value, the flip angle is maximized as to the RF pulse having a minimum phase encoding amount and at least one RF pulse irradiated immediately before. As for the other RF pulses, the flip angle varies within a range less than the maximum, irrespective of the non-imaging mode, the imaging mode, or the size of phase encoding.
Abstract:
A method for obtaining the most appropriate amplitude of signal suppression pulse, which suppresses unnecessary signals from the substance not subjected to measurement, highly accurately, swiftly and stably, and an MRI apparatus that enables the optimization are provided.A pulse amplitude adjusting means equipped in the MRI apparatus acquires signals while changing the amplitude of signal suppression pulse and calculates signal absolute values and phase values, and computes reference signals, which are polarized signal absolute values, based on the changes in signal phase values. This reference signals are subjected to polynomial fitting. A value which makes this fitting curve is 0 or closes to 0 is set as the optimal pulse amplitude.
Abstract:
There is provided a technique for, in a medical imaging apparatus enabling imaging of an arbitrary plane in a three-dimensional space, enabling automatic calculation of a slice position and automatic calculation of an extracting slice in MPR, without prolonging examination time. Two-dimensional scout scan similar to that used for manual setting of a slice position is performed, and the obtained scout images are processed to calculate a recommended slice position. Algorithms for the processing and various image processing procedures used for the processing are stored beforehand for every type of imaging region and every type of examination.
Abstract:
The MRI apparatus of the present invention executes a non-imaging mode 501 for obtaining a steady state of magnetization and an imaging mode 502 for measuring echoes for images. In the non-imaging mode 501 and the imaging mode 502, imaging is performed by using a GrE type pulse sequence. In the imaging, RF pulses are irradiated while flip angle of nuclear magnetization in the imaging mode 502 is changed in a range of values not larger than a certain value determined by flip angle of nuclear magnetization used in the non-imaging mode 502 is irradiated. This certain value is, for example, the maximum value of flip angle of nuclear magnetization used in the non-imaging mode, or flip angle provided by an RF pulse used at the end of the non-imaging mode. SAR observed with use of a GrE type pulse sequence can be thereby reduced without degrading image contrast, and thus influence on human bodies can be reduced.
Abstract:
When a magnetic resonance signal is received more than once, while a table (transfer unit) is moved, a gradient magnetic field is applied in the table moving direction, and an application amount (intensity and application time) of the gradient magnetic field in the table moving direction is changed every acquisition of data. As for the encoding by the gradient magnetic field in the table moving direction, a series of phase encode is performed at different positions of an examination target, unlike a conventional phase encode. Therefore, the Fourier transform cannot be applied to the image reconstruction. Given this situation, a magnetization map of total FOV of the examination target is determined in such a manner that a sum of the square of an absolute value of a difference is minimized, the difference between a received signal and a signal calculated from the magnetization map set as a variable, and then, the reconstruction is performed. Even when a size of signal acquisition area in the table moving direction is narrow, the magnetic resonance imaging apparatus of the present invention is capable of taking an image of a wide field of view at high speed, by performing the imaging while the table is moved continuously.
Abstract:
The MRI apparatus of the present invention executes a non-imaging mode 501 for obtaining a steady state of magnetization and an imaging mode 502 for measuring echoes for images. In the non-imaging mode 501 and the imaging mode 502, imaging is performed by using a GrE type pulse sequence. In the imaging, RF pulses are irradiated while flip angle of nuclear magnetization in the imaging mode 502 is changed in a range of values not larger than a certain value determined by flip angle of nuclear magnetization used in the non-imaging mode 502 is irradiated. This certain value is, for example, the maximum value of flip angle of nuclear magnetization used in the non-imaging mode, or flip angle provided by an RF pulse used at the end of the non-imaging mode. SAR observed with use of a GrE type pulse sequence can be thereby reduced without degrading image contrast, and thus influence on human bodies can be reduced.
Abstract:
A magnetic resonance imaging system capable of conducting spectroscopic imaging with an improved SNR without degrading the spatial resolution includes edge-preserving filter processing means for spectroscopic imaging. The edge-preserving filter processing means executes processing including the steps of calculating spectral similarity in spatial neighborhoods (spatially neighboring voxels) at each voxel in spectroscopic imaging data, calculating a spectral weight according to the spectral similarity, and conducting weighted smoothing for compounding spectra of spatial neighborhoods (spatially neighboring voxels) according to the spectral weight.
Abstract:
A magnetic resonance imaging apparatus includes a magnetic field generation means for applying gradient magnetic fields and a radio-frequency magnetic field to a patient placed in a static magnetic field in a predetermined pulse sequence; a multiple RF receiving coil comprising at least three RF receiving coils for receiving the nuclear magnetic resonance signals generated from the patient; and an image reconstruction means for reconstructing an image by processing the received nuclear magnetic resonance signals, wherein the image reconstruction means includes a coil selection means for selecting a plurality of RF receiving coil groups that are preset by combining the plurality of RF receiving coils according to imaging conditions, a synthesization means for synthesizing the measured data received by the respective RF receiving coils of each of the plurality of selected RF receiving coil groups, and a calculation means for eliminating aliasing artifacts by executing a matrix calculation as to the synthesized data.
Abstract:
In an inspecting method based on nuclear magnetic resonance, a burst wave having a plurality of sub-pulses frequency-modulated with a high frequency is generated, the burst wave is amplitude-modulated with at least a function which repeats polarity inversion, the amplitude-modulated burst wave is irradiated, as an exciting high frequency pulse, to an object to be inspected, and gradient magnetic fields are generated in predetermined pulse sequence to measure a nuclear magnetic resonance signal.