Abstract:
An end surface 3b of a solid-state laser element 3 is sloped in such a way that, assuming that laser light is incident upon air from the end surface, an angle of incidence which a normal to an inner side of the end surface forms with a traveling direction of the laser light substantially matches the Brewster angle at the incidence plane, an end surface 4a of a wavelength conversion element 4 is sloped in such a way that, assuming that the laser light is incident upon air from the end surface, an angle of incidence which a normal to an inner side of the end surface forms with a traveling direction of the laser light substantially matches the Brewster angle at the incidence plane, and the end surface 3b and the end surface 4b are arranged in such a way as to be opposite to each other.
Abstract:
A high-frequency amplifier module includes a driver-stage amplifier 3 that amplifies an RF signal input thereto from an RF input terminal 1, and a final-stage amplifier 5 that amplifies the signal amplified by the driver-stage amplifier 3 and outputs the signal after the amplification to an RF output terminal 7. The driver-stage amplifier 3 is fabricated on a silicon substrate 11, while the final-stage amplifier 5 is fabricated on a gallium arsenide substrate. This configuration downsizes the cost while maintaining a high-frequency characteristic comparable to that in the case where all components of an entire module are fabricated on a gallium arsenide substrate 71.
Abstract:
A plane waveguide type laser according to the present invention includes: a plate-shaped laser medium (5); a semiconductor laser (1) which causes excitation light to enter an end surface (5a) of the laser medium (5); first and second claddings (4a and 4b) which are bonded to lower and upper surfaces of the laser medium (5), respectively, to form a waveguide in a vertical direction; a comb heat sink (2) bonded to a lower surface of the first cladding (4a); and thermal lens producing means (20) bonded to an upper surface of the second cladding (4b). In this structure, laser oscillation in the vertical direction is performed in a waveguide mode of the laser medium (5), and the thermal lens producing means (20) forms a periodic lens effect in the laser medium (5) to perform laser oscillation in a lateral direction in a plurality of resonant modes. Therefore, a resonator having a small round-trip loss maybe formed without depending on a size of a thermal lens produced by excitation, and hence a rising characteristic of a pulse operation or a CW operation may be smoothed to obtain high-power stable output.
Abstract:
To suppress the amplification of spontaneous emission light in a principal plane width direction to thereby suppress a gain in directions other than a beam axis direction and output a high-power laser, in a solid-state laser element of a plane waveguide type that causes a fundamental wave laser beam to oscillate in a beam axis direction in a laser medium of a flat shape and forms a waveguide structure in a thickness direction as a direction perpendicular to a principal plane of the flat shape in the laser medium, inclined sections 12 are provided on both sides of the laser medium, the inclined sections 12 inclining a predetermined angle to reflect spontaneous emission light in the laser medium to a principal plane side of the flat shape, the spontaneous emission light traveling in the beam axis direction and a principal plane width direction as a direction perpendicular to the thickness direction.
Abstract:
A wavelength converting element that is of a planar waveguide type, includes a plate-like nonlinear optical material, and performs a wavelength conversion on a fundamental wave of a laser beam by propagating the fundamental wave in a plurality of laser oscillation modes in a direction perpendicular to a main surface of the plate-like nonlinear optical material, the direction being perpendicular to an optical axis, wherein periods of polarization inversions of the nonlinear optical material are changed so that each of the periods has a width of a phase matching band A that includes phase matching conditions of at least two of the plurality of laser oscillation modes and so that a non-polarization-inversion region and a polarization inversion region are formed in the nonlinear optical material.
Abstract:
Provided is a device capable of oscillating a plurality of oscillation modes within a laser medium for obtaining a fundamental wave output which is easy in output scaling and high in luminance, thereby enabling a second harmonic conversion which is high in efficiency. The device includes: a laser medium (5) that is planar, has a waveguide structure in a thickness direction of a cross-section that is perpendicular to an optical axis (6), and has a cyclic lens effect in a direction perpendicular to the optical axis (6) and the thickness direction; a clad (4) that is bonded onto one surface of the laser medium (5); and heat sink (3) that is bonded onto one surface side of the laser medium (5) through the clad (4), and in the device, a laser oscillation includes a laser oscillation that oscillates in a waveguide mode of the laser medium (5), and a laser oscillation that oscillates in a plurality of resonator modes that are generated by a cyclic lens effect of the laser medium (5).
Abstract:
A differential absorption lidar includes: a light signal generation unit for generating first, second CW light signals with first, second wavelengths having different absorption coefficients with respect to a target, a light intensity modulation unit for subjecting the first, second CW light signal to intensity modulation with a first, second CW modulation signal having a first, second frequency in a baseband, a radiation unit for multiplexing the first, second CW light signals with the intensity modulated, forming the multiplexed light signals with two wavelengths in a predetermined beam size, and radiating the light signals, a reception unit for directly detecting scattered light from the target and converting the scattered light into an electrical signal, and a signal processing unit for extracting only the first, second frequency components from the electric signal, and detecting the concentration of the target from a difference in an amplitude of time wavelengths between two signals.
Abstract:
Provided are a small-sized, low-cost, and easy-to-use laser optical path length difference detecting device, a laser optical path length difference detecting device, and a coherent optical coupling device. The laser optical path length difference detecting device detects an optical path length difference between propagation paths of a first laser beam (1) and a second laser beam (2), which are mutually coherent when the beams are propagated through two arbitrary optical paths of a plurality of laser beam optical paths. The laser optical path length difference detecting device is provided with an optical path length difference variable means (4) for changing the optical path length difference between the first laser beam (1) and the second laser beam (2), a wavefront inclination generating means (5) for inclining a wavefront of at least one of the first laser beam (1) and the second laser beam (2), and a two-dimensional detector (6) for detecting the interference light intensity distribution of the first laser beam (1) and the second laser beam (2) which have passed through the wavefront inclination generating means.
Abstract:
In the measurement system for an aircraft according to the present invention, the three-axis components of the airspeed of the aircraft, the three-axis components of the wind speed currently encountered by the aircraft, and the wind speed distribution ahead of the aircraft, are measured simultaneously, by providing a Doppler anemometer which measures the airflow speeds at a plurality of points separated by a prescribed distance in the beam irradiation direction, and an inertial data measurement device which measures the movement information and positional information of the aircraft. Furthermore, in the measurement system for an aircraft according to the present invention, the measurement accuracy of the device is improved by providing means for obtaining information the movement and positional information of the aircraft during measurement, from the inertial data measurement device, and for correcting the measurement values from the Doppler anemometer by means of the information.
Abstract:
On a plate of birefringent crystal made of an LiNbO3 crystal or an LiTaO3 crystal, a conductive substance is adhered to the whole periphery of side surfaces of the plate that intersect an incident surface of a laser beam, thereby to form a wave plate. A polarizer is provided at the latter stage of the wave plate. A wavelength is monitored based on an output from the polarizer. With this arrangement, based on the use of the LiNbO3 crystal or the LiTaO3 crystal that can be manufactured by a large quantity at low cost, it is possible to obtain polarization characteristics and wavelength discrimination characteristics that are stable against environmental changes such as temperature and external stress, by suppressing the pyroelectric effect and the piezoelectric effect of these materials.