摘要:
A display device includes liquid crystal capacitor element formed between a pixel electrode and a counter electrode. One terminals of the pixel electrode, a first switch circuit, and a second switch circuit, and a first terminal of a second transistor form an internal node. The first switch circuit and the second switch circuit have other terminals connected to a source line. The second switch circuit is configured by a series circuit of transistors, and a control terminal of the transistor, a second terminal of the transistor, and one terminal of a boost capacitor element form an output node. The other terminal of the boost capacitor element is connected to a boost line, the control terminal of the transistor is connected to a reference line, and the control terminal of the transistor is connected to a selecting line.
摘要:
A liquid crystal display device is provided which is capable of sufficiently decreasing power consumption in permanent display of still images while keeping high quality display in transparent mode, in high resolution display panels. In each pixel circuit, a pixel electrode is connected to a source line via a third transistor. When a refreshing circuit performs a refreshing operation, a boosting signal line is supplied with a voltage pulse. If the pixel electrode is at a high voltage level at this time point, a voltage at a node is boosted and a first transistor turns ON to supply a reference voltage to the pixel electrode as a refreshing voltage. If the pixel electrode is at a low voltage level, there is no boost, and the first transistor stays in OFF state, so a node assumes a voltage which is given by an off-resistance ratio of the first and the third transistors, and this voltage is supplied to the pixel electrode.
摘要:
An embodiment of the present invention provides a liquid crystal display device. In each pixel circuit, a pixel electrode is connected to a source line via a third transistor. When a refreshing circuit performs a refreshing operation, a boosting signal line is supplied with a voltage pulse. If the pixel electrode is at a high voltage level at this time point, a voltage at a node is boosted and a first transistor turns ON to supply a refreshing voltage to the pixel electrode. If the pixel electrode is at a low voltage level, there is no boost, and the first transistor stays in OFF state, so a node assumes a voltage which is given by an off-resistance ratio of the first and the third transistors, and this voltage is supplied to the pixel electrode.
摘要:
Provided is a nonvolatile memory 10 having a selective gate SG formed below a silicon layer 14, which is to be a channel region formed between a source region S and a drain region D of a transistor, through a gate insulating film 15 between the silicon layer and the selective gate, a floating gate FG formed on a part over the silicon layer 14 through a gate insulating film 16, and a control gate CG connected to the floating gate FG. The selective gate SG has one end overlapping the source region S through the gate insulating film 15, and the floating gate FG has one end overlapping the drain region D through the gate insulating film 16, and the other end separated from the source region S and overlapping the silicon layer 14 through the gate insulating film 16. Thus, a nonvolatile memory whose performance is not deteriorated even when it is formed on an insulating substrate having a low heat dissipating characteristic can be achieved.
摘要:
A liquid crystal display device includes a data signal line driving circuit which separately drives data signal lines of an active matrix pixel array. One vertical period is divided into a scanning period and a non-scanning period. The data signal line driving circuit applies a signal voltage corresponding to the pixel data having the same polarity to the same data signal line with a predetermined fixed potential as a reference regardless of an order of a selected scanning signal line in the scanning period, and applies an intermediate voltage between maximum and minimum values of pixel voltages to each data signal line in the non-scanning period, the pixel voltages being respectively held in the pixel electrodes of the pixels connected to each data signal line.
摘要:
A display device which can prevent deterioration of a liquid crystal and reduction in display quality at low power consumption without lowering an aperture ratio is provided. An opposite voltage (Vcom) is applied to an opposite electrode (80) of a liquid crystal capacitive element (Clc). One ends of a pixel electrode (20), a first switch circuit (22), a second switch circuit (23), and a first terminal of a second transistor (T2) form an internal node (N1). The other ends of the first switch circuit (22) and the second switch circuit (23) are connected to a source line (SL) and a voltage supply line (VSL), respectively. A control terminal of a first transistor (T1) in the second switch circuit (23), a second terminal of the second transistor (T2), and one end of a boost capacitive element (Cbst) form an output node (N2). The other end of the boost capacitive element (Cbst) and the control terminal of the second transistor (T2) are connected to a boost line (BST) and a reference line (REF), respectively. This configuration makes it possible to perform an action (self-refresh action) to return the absolute value of the voltage between both ends of a display element part to the value at the time of a last writing action without performing a writing action.
摘要:
A display device in which a pixel voltage is held at low power consumption without any influence from fluctuation in threshold voltage is provided. A liquid crystal capacitor element (Clc) is formed between a pixel electrode (20) and a counter electrode (80). A counter voltage (Vcom) is applied to the counter electrode (80). The pixel electrode (20), one ends of a first switch circuit (22) and a second switch circuit (23), and a first terminal of a second transistor (T2) form an internal node (N1). The other end of the first switch circuit (22) is connected to a source line (SL). The second switch circuit (23) has the other end connected to a voltage supply line (VSL) and is a series circuit of transistors (T1 and T2). A control terminal of the transistor (T1), a second terminal of the transistor (T2), and one end of the boost capacitor element (Cbst) form an output node (N2). The other end of the boost capacitor element (Cbst), the control terminal of the transistor (T2), and the control terminal of the transistor (T3) are connected to a boost line (BST), a reference line (REF), and a selecting line (SEL), respectively.
摘要:
A semiconductor memory device of the invention comprises a plurality of bit lines formed by implanting a second conductive-type impurity in a first conductive-type semiconductor substrate; a thick insulating film on the bit lines; a thin insulating film between the neighboring bit lines; and a plurality of word lines formed on the thick and thin insulating films so as to cross the bit lines, wherein each of the word lines includes a plurality of first conductors and a second conductor which electrically connects the first conductors in series, the respective first conductors are formed on the thin insulating film, the top face of the thickest portion of the thick insulating film is higher than the top face of the first conductors, and the film thickness of the thick insulating film is made thinner toward the end.
摘要:
A nonvolatile semiconductor memory device has a cell which includes a drain diffusion region and a source diffusion region formed on a surface layer of a semiconductor substrate; a first insulating film formed between the source diffusion region and the drain diffusion region; a floating gate formed on the first insulating film; a second insulating film formed on the floating gate; a first control gate formed on the second insulating film; a third insulating film formed on the first control gate and a sidewall thereof and on a sidewall of the floating gate; and a second control gate formed on the first control gate with the third insulating film interposed therebetween.
摘要:
A semiconductor memory device of the invention comprises a plurality of bit lines formed by implanting a second conductive-type impurity in a first conductive-type semiconductor substrate; a thick insulating film on the bit lines; a thin insulating film between the neighboring bit lines; and a plurality of word lines formed on the thick and thin insulating films so as to cross the bit lines, wherein each of the word lines includes a plurality of first conductors and a second conductor which electrically connects the first conductors in series, the respective first conductors are formed on the thin insulating film, the top face of the thickest portion of the thick insulating film is higher than the top face of the first conductors, and the film thickness of the thick insulating film is made thinner toward the end.