GROWTH METHOD OF FE3N MATERIAL
    1.
    发明申请
    GROWTH METHOD OF FE3N MATERIAL 有权
    FE3N材料的生长方法

    公开(公告)号:US20110269250A1

    公开(公告)日:2011-11-03

    申请号:US12772508

    申请日:2010-05-03

    IPC分类号: H01L21/3205

    摘要: A kind of growth method of Fe3N, and the growth is in the MOCVD system, including following process: 1). the surface nitridation of sapphire substrate would be made; 2). pump in carrier gas N2, ammonia and organic gallium sources, and grow low temperature GaN buffer on substrate; 3). the temperature would be raised and grow the GaN supporting layer; 4). pump in FeCp2 as Fe sources, then grow Fe3N on the GaN supporting layer; the Fe3N granular films and the Fe3N single crystal films could be obtained. The invention realizes growing high quality Fe3N film. According to the problem of growing material with difficulty, the problems are solved by controlling and adjusting the conditions for the flux of organic gallium source and iron source, growth temperature, growth time, the flux of ammonia, and mole ratio of N and Ga. In the invention, the method is easy, the growth process could be controlled, and thus the growth method and the process control of growth technology have advancement.

    摘要翻译: 一种Fe3N的生长方法,并且生长在MOCVD系统中,包括以下过程:1)。 将制作蓝宝石衬底的表面氮化; 2)。 泵送载气N2,氨和有机镓源,并在底物上生长低温GaN缓冲液; 3)。 温度升高并生长GaN支撑层; 4)。 泵浦FeCp2作为Fe源,然后在GaN支撑层上生长Fe3N; 可以获得Fe3N颗粒膜和Fe3N单晶膜。 本发明实现了生长高品质的Fe3N膜。 根据难以生长材料的问题,通过控制和调节有机镓源和铁源的通量条件,生长温度,生长时间,氨通量和N和Ga的摩尔比来解决问题。 在本发明中,该方法容易,可以控制生长过程,因此生长方法和生长技术的过程控制有所进步。

    Growth Method of Non-Polarized-Plane InN
    2.
    发明申请
    Growth Method of Non-Polarized-Plane InN 审中-公开
    非极化平面InN的生长方法

    公开(公告)号:US20100288190A1

    公开(公告)日:2010-11-18

    申请号:US12748435

    申请日:2010-03-28

    IPC分类号: C30B25/10 C30B25/02

    摘要: A kind of growth method of non-polarized-plane InN which is growing m-plane InN and In-rich m-plane InGaN on LiA1O2 (100) substrate by the metal organic chemical vapor deposition (MOCVD), and m-plane is one kind of non-polarized-plane, In-rich denotes that the component of In x is higher than 0.3 in InxGa1−xN. The invention synthetically grows m-plane InN and In-rich m-plane InGaN using LiA1O2 (100) as substrate which will be disposed and the buffer by MOCVD. And the non-polarized-plane InN would be produced through choosing appropriate substrate and the technique condition of growth as well as using the design of buffer by MOCVD.

    摘要翻译: 通过金属有机化学气相沉积(MOCVD)在LiAlO2(100)衬底上生长m面InN和富In m面InGaN的非极化面InN的一种生长方法,m面是一种 非极化平面,富In表示In x Ga 1-x N中In x的分量高于0.3。 本发明使用LiAlO 2(100)作为衬底并通过MOCVD进行缓冲,合成生长m面InN和富In m面InGaN。 而非极化平面InN将通过选择合适的衬底和生长的技术条件以及通过MOCVD使用缓冲液的设计来生产。

    Method for Forming a GaN-Based Quantum-Well LED with Red Light
    4.
    发明申请
    Method for Forming a GaN-Based Quantum-Well LED with Red Light 审中-公开
    用红光形成GaN基量子阱LED的方法

    公开(公告)号:US20110237011A1

    公开(公告)日:2011-09-29

    申请号:US12748462

    申请日:2010-03-29

    IPC分类号: H01L21/20

    摘要: This invention presents a growth method for GaN based quantum wells red light LED structure by MOCVD epitaxy growth system, GaN based GaN/InGaN quantum wells red light LED structure material is obtained. The In mole fraction (x) for quantum well material InGaN is controlled between 0.1 and 0.5. This invention realizes the lumiscience of long wave length red light in group III nitrides. Aiming at the problem of difficulty in growing high In composition InGaN material, this invention solves this problem by controlling and adjusting the flux of organic Ga source and In source, growth temperature, time, and the flux of ammonia, and the mole ratio of N to Ga. By strictly controlling the conditions such as temperature and the flux ratio of reactant in the whole process, this invention determines the radiation wave length of quantum well, realizes the lumiscience of long wave length, and obtained GaN based GaN/InGaN quantum well red light LED structure.

    摘要翻译: 本发明提出了通过MOCVD外延生长系统,GaN基GaN / InGaN量子阱红光LED结构材料的GaN基量子阱红光LED结构的生长方法。 量子阱材料InGaN的In摩尔分数(x)控制在0.1和0.5之间。 本发明实现了III类氮化物中长波长红光的光学。 针对难以生长高In组成InGaN材料的问题,本发明通过控制和调节有机Ga源的流量和源,生长温度,时间和氨流量来解决这个问题,并且N 通过严格控制整个过程中反应物的温度和通量比等条件,本发明确定了量子阱的辐射波长,实现了长波长的光学,并获得了GaN基GaN / InGaN量子阱 红光LED结构。