摘要:
Phase change memory devices can have bottom patterns on a substrate. Line-shaped or L-shaped bottom electrodes can be formed in contact with respective bottom patterns on a substrate and to have top surfaces defined by dimensions in x and y axes directions on the substrate. The dimension along the x-axis of the top surface of the bottom electrodes has less width than a resolution limit of a photolithography process used to fabricate the phase change memory device. Phase change patterns can be formed in contact with the top surface of the bottom electrodes to have a greater width than each of the dimensions in the x and y axes directions of the top surface of the bottom electrodes and top electrodes can be formed on the phase change patterns, wherein the line shape or the L shape represents a sectional line shape or a sectional L shape of the bottom electrodes in the x-axis direction.
摘要:
A nonvolatile memory cell includes a substrate and a phase changeable pattern configured to retain a state of the memory cell, on the substrate. An electrically insulating layer is provided, which contains a first electrode therein in contact with the phase changeable pattern. The first electrode has at least one of an L-shape when viewed in cross section and an arcuate shape when viewed from a plan perspective. A lower portion of the first electrode may be ring-shaped when viewed from the plan perspective. The lower portion of the first electrode may also have a U-shaped cross-section. An upper portion of the first electrode may also have an arcuate shape that spans more than 180° of a circular arc.
摘要:
Provided are a phase change memory device and a method for forming the phase change memory device. The method includes forming a phase change material layer by providing reactive radicals to a substrate. The reactive radicals may comprise precursors for a phase change material and nitrogen.
摘要:
A method of manufacturing a nonvolatile memory device includes forming an insulating film pattern, which includes apertures, on a substrate, forming a switching element in each of the apertures, forming a bottom electrode on the switching element by using a silicon (Si)-doped titanium nitride (TiN) film, and forming a variable resistance material pattern on the bottom electrode. The Si-doped TiN film is formed by repeatedly forming a TiN film and doping the TiN film with Si.
摘要:
Provided is a method of forming a semiconductor memory cell in which in order to store two bits or more data in a memory cell, three or more bottom electrode contacts (BECs) and phase-change materials (GST) have a parallel structure on a single contact plug (CP) and set resistances are changed depending on thicknesses (S), lengths (L) or resistivities (ρ) of the three or more bottom electrode contacts, so that a reset resistance and three different set resistances enable data other than in set and reset states to be stored. Also, a method of forming a memory cell in which three or more phase-change materials (GST) have a parallel structure on a single bottom electrode contact, and the phase-change materials have different set resistances depending on composition ratio or type, so that four or more different resistances can be implemented is provided.
摘要:
A nonvolatile memory cell includes a substrate and a phase changeable pattern configured to retain a state of the memory cell, on the substrate. An electrically insulating layer is provided, which contains a first electrode therein in contact with the phase changeable pattern. The first electrode has at least one of an L-shape when viewed in cross section and an arcuate shape when viewed from a plan perspective. A lower portion of the first electrode may be ring-shaped when viewed from the plan perspective. The lower portion of the first electrode may also have a U-shaped cross-section. An upper portion of the first electrode may also have an arcuate shape that spans more than 180° of a circular arc.
摘要:
A gap filling method and a method for forming a memory device, including forming an insulating layer on a substrate, forming a gap region in the insulating layer, and repeatedly forming a phase change material layer and etching the phase change material layer to form a phase change material layer pattern in the gap region.
摘要:
Phase change memory devices can have bottom patterns on a substrate. Line-shaped or L-shaped bottom electrodes can be formed in contact with respective bottom patterns on a substrate and to have top surfaces defined by dimensions in x and y axes directions on the substrate. The dimension along the x-axis of the top surface of the bottom electrodes has less width than a resolution limit of a photolithography process used to fabricate the phase change memory device. Phase change patterns can be formed in contact with the top surface of the bottom electrodes to have a greater width than each of the dimensions in the x and y axes directions of the top surface of the bottom electrodes and top electrodes can be formed on the phase change patterns, wherein the line shape or the L shape represents a sectional line shape or a sectional L shape of the bottom electrodes in the x-axis direction.
摘要:
Methods of fabricating integrated circuit memory cells and integrated circuit memory cells are disclosed. Formation of an integrated circuit memory cell include forming a first electrode on a substrate. An insulation layer is formed on the substrate with an opening that exposes at least a portion of a first electrode. An amorphous variable resistivity material is formed on the first electrode and extends away from the first electrode along sidewalls of the opening. A crystalline variable resistivity material is formed in the opening on the amorphous variable resistivity material. A second electrode is formed on the crystalline variable resistivity material.
摘要:
Provided are methods of forming contact structures and semiconductor devices fabricated using the contact structures. The formation of a contact structure can include forming a first molding pattern on a substrate, forming an insulating layer to cover at least a sidewall of the first molding pattern, forming a second molding pattern to cover a sidewall of the insulating layer and spaced apart from the first molding pattern, removing a portion of the insulating layer between the first and second molding patterns to form a hole, and forming an insulating pattern between the first and second molding patterns, and forming a contact pattern in the hole.